Current Alzheimer research
-
Review
Calcium signalling toolkits in astrocytes and spatio-temporal progression of Alzheimer's disease.
Pathological remodelling of astroglia represents an important component of the pathogenesis of Alzheimer's disease (AD). In AD astrocytes undergo both atrophy and reactivity; which may be specific for different stages of the disease evolution. Astroglial reactivity represents the generic defensive mechanism, and inhibition of astrogliotic response exacerbates b-amyloid pathology associated with AD. ⋯ Reactive astrogliosis is linked to astroglial Ca(2+) signalling, this latter being widely regarded as a mechanism of astroglial excitability. The AD pathology evolving in animal models as well as acute or chronic exposure to β-amyloid induce pathological remodelling of Ca(2+) signalling toolkit in astrocytes. This remodelling modifies astroglial Ca(2+) signalling and may be linked to cellular mechanisms of AD pathogenesis.
-
Review
The NGF Metabolic Pathway in the CNS and its Dysregulation in Down Syndrome and Alzheimer's Disease.
It is well established that individuals with Down syndrome develop Alzheimer's disease neuropathology by middle age. Both in Alzheimer's disease and Down syndrome, this is accompanied by the atrophy of NGF-dependent cholinergic neurons of the basal forebrain. An NGF trophic compromise in Alzheimer's disease had been early suspected. ⋯ Mature NGF is ultimately degraded by the metalloprotease MMP-9. This pathway has been shown to be compromised in Alzheimer's disease and Down syndrome brains, thus reviving the trophic factor hypothesis to explain the atrophy of basal forebrain cholinergic neurons in these disorders. This chapter will discuss the physiological role of NGF and its biological significance to cholinergic neurons of the CNS, and present the evidence for a dysregulation of the NGF metabolism in Alzheimer's disease and Down syndrome.
-
Microglia and astrocytes are the major source of cytokines in Alzheimer,s disease (AD). CX3CR1 is a delta chemokine receptor found in microglia and its neuronal ligand, Fractalkine, has two isoforms: an anchored-membrane isoform, and a soluble isoform. The reduced soluble fractalkine levels found in the brain (cortex/hippocampus) of aged rats, may be a consequence of neuronal loss. ⋯ Studies in transgenic mice with fractalkine null mice suggest that APP/PS-1 mice deficient for the anchored membrane-fractalkine isoform exhibited enhanced neuronal MAPT phosphorylation despite their reduced amyloid burden. The soluble fractalkine overexpression with adenoviral vectors reduced tau pathology and prevented neurodegeneration in a Tg4510 model of taupathy Finally, animals with Aβ (1-42) infused by lentivirus (cortex) or mice with the P301L mutation (frontotemporal dementia) had caspase-3 activation (8-fold) and higher proinflammatory TNF alpha levels and p-Tau deposits at 4 weeks postinfusion. Thus, the CX3CR1/Fractalkine axis regulates microglial activation, the clearance of amyloid plaque and plays a role in p-Tau intraneuronal accumulation in rodent models of AD.