Physiology & behavior
-
Physiology & behavior · Sep 2011
Serotonergic system involvement in the inhibitory action of estrogen on induced sodium appetite in female rats.
This study of the participation of the serotonergic system in the inhibitory effect of estrogen on induced sodium appetite in female rats explores sodium appetite induced by Furosemide and low sodium diet treatment (DEP) in normally cycling rats and in ovariectomized rats with and without estradiol replacement (OVX, OVX+E(2)). We also analyzed the neural activity of serotonergic neurons of the dorsal raphe nucleus (DRN) as well as the activity of other brain nuclei previously found to be involved in sodium and water balance in sodium depleted animals without access to the intake test. For this purpose, we examined the brain Fos, Fos-serotonin and Fos-vasopressin immunoreactivity patterns in diestrus (D), estrus (E), OVX and OVX+E(2) rats subjected to DEP. ⋯ Twenty hours after sodium depletion, the same groups of animals also showed a significant increase in the number of Fos-AVP immunoreactive neurons within the supraoptic nucleus, compared with D-DEP. In summary, our results demonstrate an estrogen-dependent inhibition of induced sodium appetite in normally cycling rats and ovariectomized animals with estradiol replacement, which may involve an interaction between excitatory neurons of the OVLT and inhibitory serotonergic cells of the DRN. The main finding is thus serotonergic system involvement as a possible mechanism in the inhibitory action of estrogen on induced sodium appetite.