Physiology & behavior
-
Physiology & behavior · Sep 2020
Early life stress reduces voluntary exercise and its prevention of diet-induced obesity and metabolic dysfunction in mice.
The development of obesity-related metabolic syndrome (MetS) involves a complex interaction of genetic and environmental factors. One environmental factor found to be significantly associated with MetS is early life stress (ELS). We have previously reported on our mouse model of ELS, induced by neonatal maternal separation (NMS), that displays altered regulation of the hypothalamic-pituitary-adrenal (HPA) axis and increased sensitivity in the urogenital organs, which was attenuated by voluntary wheel running. ⋯ Although body weight and fat mass were still significantly higher, exercise attenuated fasting insulin levels and mRNA levels of inflammatory markers in epididymal adipose tissue in HFS diet-fed naïve mice. Only moderate changes were observed in exercised NMS mice on a HFS diet, although this could partially be explained by reduced running distance within this group. Interestingly, sedentary NMS mice on a control diet displayed impaired glucose homeostasis and moderately increased pro-inflammatory mRNA levels in epididymal adipose, suggesting that early life stress alone impairs metabolic function and negatively impacts the therapeutic effect of voluntary exercise.