Journal of electrocardiology
-
The authors have investigated potential applications of artificial neural networks for electrocardiographic QRS detection and beat classification. For the task of QRS detection, the authors used an adaptive multilayer perceptron structure to model the nonlinear background noise so as to enhance the QRS complex. ⋯ For electrocardiographic QRS complex pattern classification, an artificial neural network adaptive multilayer perceptron was used as a pattern classifier to distinguish between normal and abnormal beat patterns, as well as to classify 12 different abnormal beat morphologies. Preliminary results using the MIT/BIH (Massachusetts Institute of Technology/Beth Israel Hospital, Cambridge, MA) arrhythmia database are encouraging.