PLoS medicine
-
Severe trauma induces a widespread response of the immune system. This "genomic storm" can lead to poor outcomes, including Multiple Organ Dysfunction Syndrome (MODS). MODS carries a high mortality and morbidity rate and adversely affects long-term health outcomes. Contemporary management of MODS is entirely supportive, and no specific therapeutics have been shown to be effective in reducing incidence or severity. The pathogenesis of MODS remains unclear, and several models are proposed, such as excessive inflammation, a second-hit insult, or an imbalance between pro- and anti-inflammatory pathways. We postulated that the hyperacute window after trauma may hold the key to understanding how the genomic storm is initiated and may lead to a new understanding of the pathogenesis of MODS. ⋯ In this study, we showed how the hyperacute postinjury time window contained a focused, specific signature of the response to critical injury that led to widespread genomic activation. A transcriptomic signature for later development of MODS was present in this hyperacute window; it showed a strong signal for cell death and survival pathways and implicated NK cells and neutrophil populations in this differential response.
-
Almost all studies that have investigated the immune response to trauma have analysed blood samples acquired post-hospital admission. Thus, we know little of the immune status of patients in the immediate postinjury phase and how this might influence patient outcomes. The objective of this study was therefore to comprehensively assess the ultra-early, within 1-hour, immune response to trauma and perform an exploratory analysis of its relationship with the development of multiple organ dysfunction syndrome (MODS). ⋯ Our study highlighted the dynamic and complex nature of the immune response to trauma, with immune alterations consistent with both activation and suppression evident within 1 hour of injury. The relationship of these changes, especially in NKT cell numbers, to patient outcomes such as MODS warrants further investigation.
-
Randomized Controlled Trial
A comparison of Selective Aortic Arch Perfusion and Resuscitative Endovascular Balloon Occlusion of the Aorta for the management of hemorrhage-induced traumatic cardiac arrest: A translational model in large swine.
Survival rates remain low after hemorrhage-induced traumatic cardiac arrest (TCA). Noncompressible torso hemorrhage (NCTH) is a major cause of potentially survivable trauma death. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) at the thoracic aorta (Zone 1) can limit subdiaphragmatic blood loss and allow for IV fluid resuscitation when intrinsic cardiac activity is still present. Selective Aortic Arch Perfusion (SAAP) combines thoracic aortic balloon hemorrhage control with intra-aortic oxygenated perfusion to achieve return of spontaneous circulation (ROSC) when cardiac arrest has occurred. ⋯ SAAP conferred a superior short-term survival over REBOA in this large animal model of hemorrhage-induced traumatic cardiac arrest with NCTH. SAAP using an oxygen-carrying perfusate was more effective in this study than non-oxygen carrying solutions in TCA. SAAP can effect ROSC from hemorrhage-induced electrocardiographic asystole in large swine.
-
Clinicians, afraid of missing intracranial injuries, liberally obtain computed tomographic (CT) head imaging in blunt trauma patients. Prior work suggests that clinical criteria (National Emergency X-Radiography Utilization Study [NEXUS] Head CT decision instrument [DI]) can reliably identify patients with important injuries, while excluding injury, and the need for imaging in many patients. Validating this DI requires confirmation of the hypothesis that the lower 95% confidence limit for its sensitivity in detecting serious injury exceeds 99.0%. A secondary goal of the study was to complete an independent validation and comparison of the Canadian and NEXUS Head CT rules among the subgroup of patients meeting the inclusion and exclusion criteria. ⋯ The NEXUS Head CT DI reliably identifies blunt trauma patients who require head CT imaging and could significantly reduce the use of CT imaging.
-
Mitchell J. Cohen discusses why trauma care must go beyond restoring perfusion to target disorders of inflammation and coagulation in severely injured patients.