Pflügers Archiv : European journal of physiology
-
Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). ⋯ TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain.
-
T-type channels are important contributors to the initiation and the maintenance of chronic pain states. Blocking T-type channels is therefore a possible therapeutic strategy for relieving pain. Here, we report the Cav3.2 T-type channel blocking action of a previously reported small organic molecule, KYS-05090S. ⋯ Its antinociceptive effect was not observed when delivered to Cav3.2 null-mice revealing a Cav3.2-dependent mechanism. KYS-05090S also reduced neuropathic pain in a model of partial sciatic nerve injury. Those results indicate that KYS-05090S mediates a potent analgesic effect in inflammatory and neuropathic pain through T-type channel modulation, suggesting that its scaffold could be explored as a new class of analgesic compounds.