Pflügers Archiv : European journal of physiology
-
The cellular and molecular basis of vertebrate touch reception remains least understood among the traditional five senses. Somatosensory afferents that innervate the skin encode distinct tactile qualities, such as flutter, slip, and pressure. Gentle touch is thought to be transduced by somatosensory afferents whose tactile end organs selectively filter mechanical stimuli. ⋯ Second, optogenetics and intact recordings show that Merkel cells mediate sustained SAI firing. Finally, loss-of-function studies in transgenic mouse models reveal that SAI afferents are also touch sensitive. Together, these studies identify molecular mechanisms of mechanotransduction in Merkel cells, reveal unexpected functions for these cells in touch, and support a revised, two-receptor site model of mechanosensory transduction.
-
Transient receptor potential cation channel, subfamily V, member 1 (TRPV1) plays a key role in sensing environmental hazards and in enhanced pain sensation following inflammation. A considerable proportion of TRPV1-expressing cells also express transient receptor potential cation channel, subfamily A, member 1 (TRPA1). There is evidence for a TRPV1-TRPA1 interaction that is predominantly calcium-dependent, and it has been suggested that the two proteins might form a heteromeric channel. ⋯ TRPV1::TRPA1 was activated by heat and displayed a threshold and temperature coefficient similar to TRPV1. However, the channel formed by TRPV1::TRPA1 has only two binding sites for capsaicin and shows less total current and a smaller capsaicin-induced shift in voltage-dependent gating than TRPV1::TRPV1 or TRPV1. We conclude that the presence of TRPA1 exerts a functional inhibition on TRPV1.
-
Transient receptor potential ankyrin 1 (TRPA1) is a member of the large TRP super family of ion channels and functions as a Ca(2+)-permeable nonselective cation channel that is activated by various noxious stimuli. TRPA1 was initially identified as a potential mediator of noxious cold stimuli in mammalian nociceptive sensory neurons, while TRPA1s from nonmammalian vertebrates (snakes, green anole lizards, and frogs) were recently reported to be activated by heat, but not cold stimulus. In this study, we examined detailed properties of the green anole TRPA1 channel (gaTRPA1) related to thermal and chemical stimulation in whole-cell and single-channel recordings. ⋯ By comparing the kinetics of heat- and AITC-evoked single-channel currents, we defined similarities and differences of gaTRPA1 channel responses to heat and AITC. We observed similar current-voltage relationship and unitary amplitudes for heat- and AITC-evoked currents and found that heat-activated currents showed shorter durations of both open and closed times. Our results suggest that the gaTRPA1 channel is directly activated by heat and chemical stimuli.
-
Hydrogen sulfide (H2S) as a novel gasotransmitter regulates variety of processes, including calcium transport systems. Sodium calcium exchanger (NCX) is one of the key players in a regulation calcium homeostasis. Thus, the aims of our work were to determine effect of sulfide signaling on the NCX type 1 (NCX1) expression and function in HeLa cells, to investigate the relationship of β-adrenergic receptors with the NCX1 in the presence and/or absence of H2S, and to determine physiological importance of this potential communication. ⋯ Indeed, GYY4137 increased expression of β1 and β3 (but not β2) adrenergic receptors. These receptors co-precipitated, co-localized with the NCX1, and induced apoptosis in the presence of H2S. Our results suggest that sulfide signaling plays a role in regulation of the NCX1, β1 and β3 adrenergic receptors, their co-localization, and stimulation of apoptosis, which might be of a potential importance in cancer treatment.
-
Pain-sensing sensory neurons (nociceptors) of the dorsal root ganglion (DRG) can become sensitized (hyperexcitable) in response to pathological conditions such as diabetes, which in turn may lead to the development of painful peripheral diabetic neuropathy (PDN). Because of insufficient knowledge about the mechanisms for this hypersensitization, current treatment for painful PDN has been limited to somewhat nonspecific systemic drugs having significant side effects or potential for abuse. ⋯ Understanding details of posttranslational regulation of nociceptive channel activity via glycosylation may facilitate development of novel therapies for treatment of painful PDN. Pharmacological targeting the specific pathogenic mechanism rather than the channel per se may cause fewer side effects and reduce the potential for drug abuse in patients with diabetes.