American journal of medical genetics. Part A
-
Am. J. Med. Genet. A · Jan 2004
A new mutation in the skeletal ryanodine receptor gene (RYR1) is potentially causative of malignant hyperthermia, central core disease, and severe skeletal malformation.
Malignant hyperthermia susceptibility (MHS) and central core disease (CCD) have been shown to result from missense mutations in the ryanodine receptor gene of the skeletal muscle (RYR1). A 15-year-old patient who had spondylocostal dysostosis (SCD) developed an MH crisis during general anesthesia. The patient was characterized phenotypically by block vertebrae, vertebral fusion, short neck and thorax, fused ribs, craniofacial abnormalities, spina bifida occulta, and a diaphragmatic defect closed surgically in early infancy. ⋯ This mutation was also present in the mother, in whom MH disposition and CCD were determined by muscle investigations. We suggest that the newly identified RYR1 mutation is closely associated with MH and CCD. A probable causative role of the RYR1 gene in SCD patients should be assessed by further genetic investigations.
-
Am. J. Med. Genet. A · Jan 2004
Case ReportsA severe autosomal-dominant periodic inflammatory disorder with renal AA amyloidosis and colchicine resistance associated to the MEFV H478Y variant in a Spanish kindred: an unusual familial Mediterranean fever phenotype or another MEFV-associated periodic inflammatory disorder?
Familial Mediterranean fever (FMF) is an autosomal recessive disease characterized by recurring short attacks of fever and serositis. Secondary AA amyloidosis is the worst complication of the disease and often determines the prognosis. The MEFV gene, on chromosome 16p13.3, is responsible for the disease and around 30 mutations have been reported to date. ⋯ In addition, mutations in the TNFRSF1A and CIAS1/PYPAF1/NALP3 genes, related to the dominantly inherited autoinflammatory periodic syndromes, were ruled out. However, the dominant inheritance of the disease, the long fever episodes with a predominant joint involvement, and the resistance to colchicine in these patients raise the question of whether the periodic syndrome seen in this kindred is a true FMF disease with unusual manifestations or rather another MEFV-associated periodic syndrome. We conclude that the new H478Y MEFV mutation is the dominant pathological variant causing the inflammatory periodic syndrome in this kindred and that full-length analyses of the MEFV gene are needed to obtain an adequate diagnosis of patients with clinical suspicion of a hereditary periodic fever syndrome, especially those from non-ancestral populations.