Reviews in the neurosciences
-
Review
Epileptogenesis following experimentally induced traumatic brain injury - a systematic review.
Traumatic brain injury (TBI) is a complex neurotrauma in civilian life and the battlefield with a broad spectrum of symptoms, long-term neuropsychological disability, as well as mortality worldwide. Posttraumatic epilepsy (PTE) is a common outcome of TBI with unknown mechanisms, followed by posttraumatic epileptogenesis. There are numerous rodent models of TBI available with varying pathomechanisms of head injury similar to human TBI, but there is no evidence for an adequate TBI model that can properly mimic all aspects of clinical TBI and the first successive spontaneous focal seizures follow a single episode of neurotrauma with respect to epileptogenesis. ⋯ Mossy fiber sprouting, loss of dentate hilar neurons along with recurrent seizures, and epileptic discharge similar to human PTE have been studied in fluid percussion injury, weight-drop injury, and cortical impact models, but further refinement of animal models and functional test is warranted to better understand the underlying pathophysiology of posttraumatic epileptogenesis. A multifaceted research approach in TBI model may lead to exploration of the potential treatment measures, which are a major challenge to the research community and drug developers. With respect to clinical setting, proper patient data collection, improved clinical trials with advancement in drug delivery strategies, blood-brain barrier permeability, and proper monitoring of level and effects of target drug are also important.