Journal of biomechanics
-
Journal of biomechanics · Jan 1991
A model of the alar ligaments of the upper cervical spine in axial rotation.
Although there are seven vertebrae in the human cervical spine, over 50% of the total axial rotation occurs between the first and second vertebrae, at the atlanto-axial joint. Such motion is possible because of the lack of an intervertebral disc and the shape of the articular facets. The limitation of axial rotation, essential because the spinal cord and vertebral arteries cross this joint, is achieved with ligamentous structures, of which the left and right alar ligaments are primary. ⋯ The model also predicts the observation that a significant percentage of rotation at the atlanto-axial joint occurs freely, without ligamentous resistance. A physical and a mathematical description of the model is presented. Cadaveric experimental data are demonstrated to support the model.