Journal of biomechanics
-
Journal of biomechanics · Jun 1996
Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties.
Models which are based on non-invasive bone measurements may in the future be able to successfully identify individual subjects at an increased risk for hip fracture; thus, we designed a study to determine the usefulness of dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) in predicting the local material properties of human proximal femoral cancellous bone. There has been some disagreement in the scientific literature regarding appropriate predictive models for local material properties of cancellous bone. We sought to confirm that density-mechanical property relationships were consistent from subject to subject, and that three-dimensional QCT measurements were stronger predictors of mechanical properties than two-dimensional DXA results. ⋯ These density measurements explained at best 30-40 percent of the variance in modulus and 50-60 percent of the variance in ultimate stress. The orientation of cancellous cubes in the principal compressive trabeculae region was a significant contributor to mechanical properties (p= 0.0001) independent of bone density. This finding was not as dramatic in the femoral neck cancellous bone region.