Journal of biomechanics
-
Journal of biomechanics · Jan 2006
Clinical TrialChanges in axial stiffness of the trunk as a function of walking speed.
Research suggests that abnormal coordination patterns between the thorax and pelvis in the transverse plane observed in patients with Parkinson's disease and the elderly might be due to alteration in axial trunk stiffness. The purpose of this study was to develop a tool to estimate axial trunk stiffness during walking and to investigate its functional role. Fourteen healthy young subjects participated in this study. ⋯ Estimated axial trunk stiffness increased with increasing walking speed. Functionally, the suppression of axial rotation of thorax may have a positive influence on head stability as well as allowing recoil between trunk segments. Furthermore, the increased stiffness at increased walking speed would facilitate the higher frequency rotation of the trunk in the transverse plane required at the higher walking speeds.
-
Journal of biomechanics · Jan 2006
An approach to the simulation of fluid-structure interaction in the aortic valve.
A pair of finite element models has been employed to study the interaction of blood flow with the operation of the aortic valve. A three-dimensional model of the left ventricle with applied wall displacements has been used to generate data for the spatially and time-varying blood velocity profile across the aortic aperture. These data have been used as the inlet loading conditions in a three-dimensional model of the aortic valve and its surrounding structures. ⋯ The aortic valve behaves in an essentially symmetric way under the action of this flow, so that the pressure difference across the leaflets is approximately uniform. This work supports the use of spatially uniform but temporally variable pressure distributions across the leaflets in dry or structural models of aortic valves. The study is a major advance through its use of truly three-dimensional geometry, spatially non-uniform loading conditions for the valve leaflets and the successful modelling of progressive contact of the leaflets in a fluid environment.
-
In the standard inverse dynamic method, joint moments are assessed from ground reaction force data and position data, where segmental accelerations are calculated by numerical differentiation of position data after low-pass filtering. This method falls short in analyzing the impact phase, e.g. landing after a jump, by underestimating the contribution of the segmental accelerations to the joint moment assessment. This study tried to improve the inverse dynamics method for the assessment of knee moment by evaluating different cutoff frequencies in low-pass filtering of position data on the calculation of knee moment. ⋯ Because the accelerometer-based method did not result in the expected improvement of the knee moment assessment during activities with high impacts, it is proposed to filter the ground reaction force with the same cutoff frequency as the calculated accelerations. When this precaution is not taken, the impact peaks in the moments can be considered as artifacts. On the basis of these findings, we recommend in the search to biomechanical explanations of chronic overuse injuries, like jumper's knee, not to consider the relation with impact peak force and impact peak moment.
-
Journal of biomechanics · Jan 2006
Determination of frictional conditions between electrode array and endosteum lining for use in cochlear implant models.
Frictional conditions between the electrode array (in cochlear implants) and the endosteum lining covering the walls of the interior scala tympani structure strongly influence the sliding behaviour of the electrode array. Friction coefficients, determined by a simple but effective method based on the impending slippage model of electrode arrays sliding over the endosteum lining are reported in this paper. ⋯ Application of lubricants (glycerin and sorbelene) has the potential to lower the friction coefficient for Nucleus standard straight array (0.12 and 0.15) and for the Contour array (0.04 and 0.08). These results are used in finite element models to predict accurately the trajectories of electrode arrays and sliding contact pressures on cochlear structures to evaluate the likelihood of damage sustained during insertion.