Journal of biomechanics
-
Journal of biomechanics · Jan 2007
Cervical facet capsular ligament yield defines the threshold for injury and persistent joint-mediated neck pain.
The cervical facet joint has been identified as a source of neck pain, and its capsular ligament is a likely candidate for injury during whiplash. Many studies have shown that the mechanical properties of ligaments can be altered by subfailure injury. However, the subfailure mechanical response of the facet capsular ligament has not been well defined, particularly in the context of physiology and pain. ⋯ Ligament yield point occurred at a distraction magnitude in which pain symptoms begin to appear in vivo in the rat. These mechanical findings provide insight into the relationship between gross structural failure and painful loading for the facet capsular ligament, which has not been previously defined for such neck injuries. Findings also present a framework for more in-depth methods to define the threshold for persistent pain and could enable extrapolation to the human response.
-
Journal of biomechanics · Jan 2007
Lumbosacral orthoses reduce trunk muscle activity in a postural control task.
Biomechanical modeling estimated that trunk muscle activity during various tasks could be reduced by 1-14% without the loss of spine stability when a lumbosacral orthosis (LSO) is worn [Cholewicki, J., 2004. The effects of lumbosacral orthoses on spine stability: what changes in EMG can be expected? Journal of Orthopedic Research 22, 1150-1155]. The present study experimentally tested these theoretical predictions in an unstable sitting task. ⋯ No significant differences were present in the abdominal muscle activity. These results agree with earlier spine modeling simulations, which predicted the greatest reduction in muscle activity due to LSO to occur in TES and LES. It was hypothesized that such a reduction in muscle co-contraction could benefit patients with low back pain, who exhibit elevated muscular activity during postural tasks such as walking, standing and sitting.
-
Finite element (FE) models are used to identify head injury mechanisms and design new and improved injury prevention schemes. Although brain-skull boundary conditions strongly influence the model mechanical responses, limited experimental data are available to develop an informed representation. We hypothesize that the spinal cord tension and gravity contribute to the pons displacement in vivo. ⋯ By comparing images before and after the motion, we found that while the rotation of the pons is negligible relative to the skull, the pons displaces significantly at the foramen magnum, on the order of approximately 2 mm. When the spinal cord tension and gravity act in concert, the pons moves caudally; when opposed, superiorly, such that the influence of gravity on the pons is six times that of the spinal cord tension. Based on these findings, we recommend that the brainstem-skull interface be treated as a sliding (with or without friction) boundary condition in FE models of the human head.