Journal of biomechanics
-
Journal of biomechanics · Sep 2009
Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
Elevated central arterial (aortic) blood pressure is related to increased risk of cardiovascular disease. Methods of non-invasively estimating this pressure would therefore be helpful in clinical practice. To achieve this goal, a physics-based model is derived to correlate the arterial pressure under a suprasystolic upper-arm cuff to the aortic pressure. ⋯ Correlation between estimated and actual central waveforms was greater than 90%. Individualization of model parameters did not significantly improve systolic and diastolic pressure agreement, but increased waveform correlation. Further research is necessary to confirm that more accurate brachial pressure measurement improves central pressure estimation.
-
Journal of biomechanics · Sep 2009
Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union.
Delayed unions are a problematic complication of fracture healing whose pathophysiology is not well understood. Advanced molecular biology methods available with mice would be advantageous for investigation. In humans, decreased fixation rigidity and poor reduction are generally associated with delayed unions. ⋯ The less flexible bridging plate induced only intramembranous ossification whereas the more flexible bridging plate induced a mixture of endochondral and intramembranous ossification. However, the different plates led to a delay in healing of only 3-5 days in the period between 14 and 21 post-operative days. In mice, considerable fixation flexibility is necessary to induce secondary bone healing similar to that which occurs in humans, but this was not sufficient to induce a substantial delay in bone healing as would be expected in humans.