Journal of biomechanics
-
Scarring and tissue fibrosis represent a significant source of morbidity in the United States. Despite considerable research focused on elucidating the mechanisms underlying cutaneous scar formation, effective clinical therapies are still in the early stages of development. ⋯ Mechanotransduction, which refers to the mechanisms by which mechanical forces are converted to biochemical stimuli, has been closely linked to inflammation and fibrosis and is believed to play a critical role in scarring. This review provides an overview of our current understanding of the mechanisms underlying scar formation, with an emphasis on the relationship between mechanotransduction pathways and their therapeutic implications.
-
Journal of biomechanics · Jun 2014
Functional analysis of limb recovery following autograft treatment of volumetric muscle loss in the quadriceps femoris.
Severe injuries to the extremities often result in muscle trauma and, in some cases, significant volumetric muscle loss (VML). These injuries continue to be challenging to treat, with few available clinical options, a high rate of complications, and often persistent loss of limb function. To facilitate the testing of regenerative strategies for skeletal muscle, we developed a novel quadriceps VML model in the rat, specifically addressing functional recovery of the limb. ⋯ Histological sections of the affected muscles showed extensive fibrosis, suggesting that this scarring of the muscle may be in part the cause of the loss of muscle function in this VML model. Taken together, these data are consistent with clinical findings of reduced muscle function in large VML injuries. This new model with quantitative functional outcome measures offers a platform on which to evaluate treatment strategies designed to regenerate muscle tissue volume and restore limb function.
-
Journal of biomechanics · Jun 2014
Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering.
The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individual tissues reported in the literature exhibit great variation and even span several orders of magnitude. ⋯ The permeability was very different across tissue regions, with the AF permeability (64 E(-16)m(4)/Ns) higher than the NP and CEP (~5.5 E(-16)m(4)/Ns). Additionally, a normalized time-constant (3000s) for the stress relaxation was similar for all the disc tissues. The properties measured in this study are important as benchmarks for tissue engineering and for modeling the disc's mechanical behavior and transport.
-
Journal of biomechanics · Jun 2014
Effect of high altitude exposure on the hemodynamics of the bidirectional Glenn physiology: modeling incremented pulmonary vascular resistance and heart rate.
The considerable blood mixing in the bidirectional Glenn (BDG) physiology further limits the capacity of the single working ventricle to pump enough oxygenated blood to the circulatory system. This condition is exacerbated under severe conditions such as physical activity or high altitude. In this study, the effect of high altitude exposure on hemodynamics and ventricular function of the BDG physiology is investigated. ⋯ Significant increase in mean systemic pressure (9%) was observed at 80% PVR (40% HR) increase. The results show that the poor ventricular function fails to overcome the increased preload and implied low oxygenation in BDG patients at higher altitudes, especially for those with high baseline PVRs. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different PVR increments.