Journal of biomechanics
-
Journal of biomechanics · Nov 2020
Between-session reliability of subject-specific musculoskeletal models of the spine derived from optoelectronic motion capture data.
This study evaluated the between-session reliability of creating subject-specific musculoskeletal models with optoelectronic motion capture data, and using them to estimate spine loading. Nineteen healthy participants aged 24-74 years underwent the same set of measurements on two separate occasions. Retroreflective markers were placed on anatomical regions, including C7, T1, T4, T5, T8, T9, T12 and L1 spinous processes, pelvis, upper and lower limbs, and head. ⋯ Spine curvature measures showed excellent reliability (ICC = 0.79-0.91) and body scaling segments showed fair to excellent reliability (ICC = 0.46-0.95). We found that musculoskeletal models showed mostly excellent between-session reliability to estimate spine loading, with 91% of ICC values > 0.75 for all activities. This information is a necessary precursor for using motion capture data to estimate spine loading from subject-specific musculoskeletal models, and suggests that marker data will deliver reproducible subject-specific models and estimates of spine loading.
-
Journal of biomechanics · Nov 2020
A comparison of balance-correcting responses induced with platform-translation and shoulder-pull perturbation methods.
The understanding of reactive balance control mechanisms in humans emanates from studies utilizing a variety of perturbation methods, instructions, and sensory conditions. The use of different perturbation methods may produce method-specific balance-correcting responses. This study evaluated balance-correcting responses induced with platform-translation and shoulder-pull methods with equilibrated perturbation intensities, and whether the absence of vision affects balance-correcting responses differently between perturbation methods. ⋯ During platform-translation trials participants demonstrated smaller MOS which placed them in a less favorable circumstance for balance recovery. Platform-translation appears to be more challenging than shoulder-pull perturbation in terms of balance recovery. This study underscores that caution is required when interpreting results of studies utilizing different perturbation paradigms.