Journal of biomechanics
-
Journal of biomechanics · Jun 2014
Effect of high altitude exposure on the hemodynamics of the bidirectional Glenn physiology: modeling incremented pulmonary vascular resistance and heart rate.
The considerable blood mixing in the bidirectional Glenn (BDG) physiology further limits the capacity of the single working ventricle to pump enough oxygenated blood to the circulatory system. This condition is exacerbated under severe conditions such as physical activity or high altitude. In this study, the effect of high altitude exposure on hemodynamics and ventricular function of the BDG physiology is investigated. ⋯ Significant increase in mean systemic pressure (9%) was observed at 80% PVR (40% HR) increase. The results show that the poor ventricular function fails to overcome the increased preload and implied low oxygenation in BDG patients at higher altitudes, especially for those with high baseline PVRs. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different PVR increments.
-
Journal of biomechanics · Apr 2014
Comparative StudyComparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain.
The local dynamic stability of trunk movements, quantified using the maximum Lyapunov exponent (λmax), can provide important information on the neuromuscular control of spine stability during movement tasks. Although previous research has displayed the promise of this technique, all studies were completed with healthy participants. Therefore the goal of this study was to compare the dynamic stability of spine kinematics and trunk muscle activations, as well as antagonistic muscle co-contraction, between athletes with and without low back pain (LBP). ⋯ Although non-significant, kinematic and trunk system EMG stability also tended to be impaired in LBP participants, whereas they also tended to co-contract their antagonist muscles more. This study provides evidence that Lyapunov analyses of kinematic and muscle activation data can provide insight into the neuromuscular control of spine stability in back pain participants. Future research will repeat these protocols in patients with higher levels of pain, with hopes of developing a tool to assess impairment and treatment effectiveness in clinical and workplace settings.
-
Journal of biomechanics · Apr 2014
Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc.
Novel strategies to heal discogenic low back pain could highly benefit from comprehensive biophysical studies that consider both mechanical and biological factors involved in intervertebral disc degeneration. A decrease in nutrient availability at the bone-disc interface has been indicated as a relevant risk factor and as a possible initiator of cell death processes. Mechanical behaviour of both healthy and degenerated discs could highly interact with cell death in these compromised situations. ⋯ However, mechanical deformations were responsible for a worsening in terms of cell death in the inner annulus, a disadvantaged zone far from the boundary supply with both an increased cell demand and a strain-dependent decrease of diffusivity. Such adverse mechanical effects were more accentuated when degenerative properties were simulated. Overall, this study paves the way for the use of biophysical models for a more integrated understanding of intervertebral disc pathophysiology.
-
Accurate knowledge of the isolated contributions of joint movements to the three-dimensional displacement of the center of mass (COM) is fundamental for understanding the kinematics of normal walking and for improving the treatment of gait disabilities. Saunders et al. (1953) identified six kinematic mechanisms to explain the efficient progression of the whole-body COM in the sagittal, transverse, and coronal planes. These mechanisms, referred to as the major determinants of gait, were pelvic rotation, pelvic list, stance knee flexion, foot and knee mechanisms, and hip adduction. ⋯ We found that hip flexion, stance knee flexion, and ankle-foot interaction (comprised of ankle plantarflexion, toe flexion and the displacement of the center of pressure) are the major determinants of the displacements of the COM in the sagittal plane, while hip adduction and pelvic list contribute most significantly to the mediolateral displacement of the COM in the coronal plane. Pelvic rotation and pelvic list contribute little to the vertical displacement of the COM at all walking speeds. Pelvic tilt, hip rotation, subtalar inversion, and back extension, abduction and rotation make negligible contributions to the displacements of the COM in all three anatomical planes.
-
Journal of biomechanics · Apr 2014
Comparative StudyA comparison of muscle energy models for simulating human walking in three dimensions.
The popular Hill model for muscle activation and contractile dynamics has been extended with several different formulations for predicting the metabolic energy expenditure of human muscle actions. These extended models differ considerably in their approach to computing energy expenditure, particularly in their treatment of active lengthening and eccentric work, but their predictive abilities have never been compared. In this study, we compared the predictions of five different Hill-based muscle energy models in 3D forward dynamics simulations of normal human walking. ⋯ In predictive simulations that optimized neuromuscular control to minimize the metabolic cost, all five models predicted similar speeds, step lengths, and stance phase durations. However, some of the models predicted a hip circumduction strategy to minimize metabolic cost, while others did not, and the accuracy of the predicted knee and ankle angles and ground reaction forces also depended on the energy model used. The results highlights the need to clarify how eccentric work should be treated when calculating muscle energy expenditure, the difficulty in predicting realistic metabolic costs in simulated walking even with a detailed 3D musculoskeletal model, the potential for using such models to predict energetically-optimal gait modifications, and the room for improvement in existing muscle energy models and locomotion simulation frameworks.