Journal of biomechanics
-
Journal of biomechanics · Jan 2008
Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc.
The objective of this study was to examine the effects of mechanical compression on metabolism and distributions of oxygen and lactate in the intervertebral disc (IVD) using a new formulation of the triphasic theory. In this study, the cellular metabolic rates of oxygen and lactate were incorporated into the newly developed formulation of the mechano-electrochemical mixture model [Huang, C.-Y., Gu, W. Y., 2007. ⋯ In contrast, static compression exhibited inverse effects on transport and metabolism of oxygen and lactate. The theoretical predictions in this study are in good agreement with those in the literature. This study established a new theoretical model for analyzing cellular metabolism of nutrients in hydrated, fibrous soft tissues under mechanical compression.
-
Journal of biomechanics · Jan 2008
Vertebral end-plate fractures as a result of high rate pressure loading in the nucleus of the young adult porcine spine.
In a healthy spine, end-plate fractures occur from excessive pressurization of the intervening nucleus. Younger spines are most susceptible to such type of injury due to the highly hydraulic nature of their intervertebral discs. The purpose of this paper was to confirm this fracture mechanism of the healthy spine through the pressurization of the nucleus in the absence of external compressive loading. ⋯ Also, in each of the growth-plate fractured specimens, nuclear material was forcefully emitted, during fracture, from the intervertebral disc into the vertebral foramen. The posterior end-plate fractures produced here are similar to those often seen in young adult humans. This provides insight into a mechanism of fracture development through pressurization of the nucleus that might be seen in older adolescents and younger adults during athletic events or mild trauma.
-
Journal of biomechanics · Jan 2008
Effects of a hip belt on transverse plane trunk coordination and stability during load carriage.
This study examined the transverse plane kinematics of the pelvis, thorax and head while participants walked at a range of speeds on a treadmill under three load conditions: no load, with a loaded backpack with no hip belt and with a loaded backpack with a hip belt. Research has suggested that one mechanism for adapting to heavy loads carried with no hip belt is to reduce the amplitudes and relative phase of transverse plane pelvic and thoracic rotations, in order to minimize rotational torque on the loaded upper body. Transverse plane rotation amplitudes of the pelvis, thorax, backpack and head were calculated from 3D kinematic data for 12 healthy subjects, walking at speeds of 0.5, 0.9, 1.3 and 1.7 ms(-1). ⋯ The backpack with the hip belt allowed significantly larger transverse plane rotation amplitudes, along with increased stability of the coordination pattern, than the backpack with no hip belt. Motion patterns of the backpack and thorax suggested that the backpack frame was used to assist with the deceleration and reversal of the loaded thorax, driven by the pelvis through the hip belt connection. Use of the frame in this way may have required less trunk muscle activation and allowed for improved pattern stability.
-
Journal of biomechanics · Jan 2008
A new technique for internal fixation of femoral fractures in mice: impact of stability on fracture healing.
Mouse models are of increasing interest to study the molecular aspects of fracture healing. Because biomechanical factors greatly influence the healing process, stable fixation of the fracture is of interest also in mouse models. Unlike in large animals, however, there is a lack of mouse models which provide stable osteosynthesis. ⋯ Of interest, the pin-clip fixation showed reliable union after 5 weeks, whereas the unstable pin fixation did not regularly achieve adequate fracture healing. In conclusion, we introduce a novel, easily applicable internal osteosynthesis technique in mice, which provides rotational stability after femoral fracture fixation. We further show that a more stable osteosynthesis significantly improves the process of fracture healing also in mice.
-
Journal of biomechanics · Jan 2007
Computational and experimental models of the human torso for non-penetrating ballistic impact.
Both computational finite element and experimental models of the human torso have been developed for ballistic impact testing. The human torso finite element model (HTFEM), including the thoracic skeletal structure and organs, was created in the finite element code LS-DYNA. The skeletal structure was assumed to be linear-elastic while all internal organs were modeled as viscoelastic. ⋯ A comparison of the HSTM and HTFEM response showed similar pressure profiles and less than 35% peak pressure difference for organs near the ballistic impact point. Furthermore, the peak sternum accelerations of the HSTM and HTFEM varied by less than 10% for impacts over the sternum. These models provide comparative tools for determining the thoracic response to ballistic impact and could be used to evaluate soft body armor design and efficacy, determine thoracic injury mechanisms and assist with injury prevention.