Journal of biomechanics
-
Journal of biomechanics · Apr 2018
Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
The dynamics of the center of mass (CoM) during walking and running at various gait conditions are well described by the mechanics of a simple passive spring loaded inverted pendulum (SLIP). Due to its simplicity, however, the current form of the SLIP model is limited at providing any further information about multi-segmental lower limbs that generate oscillatory CoM behaviors and their corresponding ground reaction forces. Considering that the dynamics of the CoM are simply achieved by mass-spring mechanics, we wondered whether any of the multi-joint motions could be demonstrated by simple mechanics. ⋯ From the mechanically simulated trajectories of the ankle joint and CoM, the motion of lower-limb segments, such as thigh and shank angles, could be estimated from inverse kinematics. The estimation of lower limb kinematics showed a qualitative match with empirical data of walking at various speeds. The representability of passive compliant mechanics for the kinetics of the CoM and ankle joint and lower limb joint kinematics implies that the coordination of multi-joint lower limbs during gait can be understood with a mechanical framework.
-
Journal of biomechanics · Apr 2018
Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking.
To enhance the wearability of portable motion-monitoring devices, the size and number of sensors are minimized, but at the expense of quality and quantity of data collected. For example, owing to the size and weight of low-frequency force transducers, most currently available wearable gait measurement systems provide only limited, if any, elements of ground reaction force (GRF) data. To obtain the most GRF information possible with a minimal use of sensors, we propose a GRF estimation method based on biomechanical knowledge of human walking. ⋯ Using the vertical GRF and CoP profile for gait speeds ranging from 0.93 to 1.89 m/s, the anterior-posterior (A-P) GRF was estimated and resulted in an average correlation coefficient of R = 0.982 ± 0.009. Even when the ground contact timing and gait speed information were alone available, our method estimated GRFs resulting in R = 0.969 ± 0.022 for the A-P and R = 0.891 ± 0.101 for the vertical GRFs. This research demonstrates that the biomechanical knowledge of human walking, such as inherited oscillatory characteristics of the CoM, can be used to gain unmeasured information regarding human gait dynamics.
-
Journal of biomechanics · Mar 2018
A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing.
A number of geometrically-detailed passive finite element (FE) models of the lumbar spine have been developed and validated under in vitro loading conditions. These models are devoid of muscles and thus cannot be directly used to simulate in vivo loading conditions acting on the lumbar joint structures or spinal implants. Gravity loads and muscle forces estimated by a trunk musculoskeletal (MS) model under twelve static activities were applied to a passive FE model of the L4-L5 segment to estimate load sharing among the joint structures (disc, ligaments, and facets) under simulated in vivo loading conditions. ⋯ Therefore, as an alternative approach to represent in vivo loading conditions in passive FE model studies, this FL can be estimated by available in-house or commercial MS models. In clinical applications and design of implants, commonly considered in vitro loading conditions on the passive FE models do not adequately represent the in vivo loading conditions under muscle exertions. Therefore, more realistic in vivo loading conditions should instead be used.
-
Journal of biomechanics · Mar 2018
Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation.
Understanding the effect of impact loading on the mechanical response of the intervertebral disc (IVD) is valuable for investigating injury mechanisms and devising effective therapeutic modalities. This study used 24 porcine thoracic motion segments to characterize the mechanical response of intact (N = 8), degenerated (Trypsin-denatured, N = 8), and repaired (Genepin-treated, N = 8) IVDs subject to impact loading. A meta-model analysis of poroelastic finite element simulations was used in combination with ex-vivo creep and impact tests to extract the material properties. ⋯ It is concluded that the disc time-dependent response significantly changes with disc degeneration. Cross-linker Genipin has the potential to recover the hydraulic permeability and can potentially change the time dependent response, particularly in the IDP. This is the first study, to our best knowledge, which explores the effect of impact loading on the healthy, degenerated and repaired IVD using both creep and impact validation tests.
-
Journal of biomechanics · Mar 2018
Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.
Understanding load-sharing in the spine during in-vivo conditions is critical for better spinal implant design and testing. Previous studies of load-sharing that considered actual spinal geometry applied compressive follower load, with or without moment, to simulate muscle forces. Other studies used musculoskeletal models, which include muscle forces, but model the discs by simple beams or spherical joints and ignore the articular facet joints. ⋯ The disc forces and moments were determined using equilibrium equations, which considered the applied loads, including muscle forces and IDP, as well as forces in the ligaments and facet joints predicted by the FE model. Load-sharing was calculated as the portion of the total spinal load carried along the spine by each individual spinal structure. The results revealed that spinal loads which increased substantially from the upright to the flexed posture were mainly supported by the discs in the upright posture, whereas the ligaments' contribution in resisting shear, compression, and moment was more significant in the flexed posture.