HardwareX
-
In this article, we introduce a portable and low-cost ventilator that could be rapidly manufactured, to meet the increasing demand of ventilators worldwide produced by COVID-19 pandemic. These ventilators should be rapidly deployable and with functional capabilities to manage COVID-19 patients with severe acute respiratory distress syndrome (ARDS). Our implementation offers robustness, safety and functionality absent in existing solutions to the ventilator shortage (i.e., telemonitoring, easy-to-disinfect, modularity) by maintaining simplicity. ⋯ The quality measurements obtained after testing on a calibrated artificial lung demonstrate repeatability and accuracy exceeding human capabilities of manual ventilation. The complete design files are provided in the supplementary materials to facilitate ventilator production even in resource-limited settings. The implementation of this mechanical ventilator could eliminate device rationing or splitting to serve multiple patients on ICUs.
-
To assist firefighters and other first responders to use their existing equipment for respiration during the COVID-19 pandemic without using single-use, low-supply, masks, this study outlines an open source kit to convert a 3M-manufactured Scott Safety self-contained breathing apparatus (SCBA) into a powered air-purifying particulate respirator (PAPR). The open source PAPR can be fabricated with a low-cost 3-D printer and widely available components for less than $150, replacing commercial conversion kits saving 85% or full-fledged proprietary PAPRs saving over 90%. ⋯ The open source PAPR has controllable air flow and its design enables breathing even if the fan is disconnected or if the battery dies. The open source PAPR was tested for air flow as a function of battery life and was found to meet NIOSH air flow requirements for 4 h, which is 300% over expected regular use.