Journal of cancer research and therapeutics
-
2-Deoxy-D-glucose (2-DG), a glycolytic inhibitor, was observed earlier to increase DNA, chromosomal, and cellular damage in tumor cells, by inhibiting energy-dependent repair processes. Lonidamine (LND) selectively inhibits glycolysis in cancer cells. It damages the condensed mitochondria in these cells, impairing thereby the activity of hexokinase (predominantly attached to the outer mitochondrial membranes). It inhibits repair of radiation-induced potentially lethal cellular damage in HeLa and Chinese hamster (HA-1) cells. However, other than a preliminary study on human glioma (BMG-1) cells in this laboratory, the effects of LND on radiation-induced cytogenetic damage have not been reported earlier. ⋯ These data suggest that the short-term presence of either lonidamine or 2-DG-at clinically relevant and nontoxic concentrations-could increase the treatment response of malignant gliomas at optimum radiation doses, reducing thereby the side effects of radiotherapy.