Microvascular research
-
Microvascular research · Jan 2009
ReviewAlteration of microvascular permeability in acute kidney injury.
Functional and structural abnormalities in the renal microvasculature are important processes contributing to the pathophysiology of ischemic acute kidney injury (AKI). Renewed interest in the complex interplay between tubular injury, inflammation and microvascular alterations has emerged in order to gain a better understanding of acute kidney injury syndromes. This review examines alterations of the renal microvasculature as they relate to ischemic and septic AKI with an emphasis on the mechanisms involved in altered microvascular permeability.
-
Microvascular research · Jan 2009
ReviewRegulation of endothelial barrier function by reactive oxygen and nitrogen species.
Excessive generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), by activated neutrophils and endothelial cells, has been implicated in the pathophysiology of endothelial barrier dysfunction. Disruption of the integrity of this barrier markedly increases permeability to fluids, solutes and inflammatory cells and is the hallmark of many disorders such as acute lung injury (ALI) and sepsis. ⋯ However, no significant benefits have been observed, so far, in clinical trials of antioxidants for the treatment of endothelial barrier dysfunction. This article will review the available evidence implicating ROS and RNS in endothelial barrier dysfunction, explore potential underlying mechanisms, and identify areas of further research.
-
Microvascular research · Jan 2009
ReviewAcute kidney injury and lung dysfunction: a paradigm for remote organ effects of kidney disease?
An increasing body of evidence suggests that the deleterious effects of Acute Kidney Injury (AKI) on remote organ function could, at least in part, be due to loss of the normal balance of immune, inflammatory, and soluble mediator metabolism that attends injury of the tubular epithelium. Such dysregulation, acting at least in part on endothelium, leads to compromise of remote organ function. Kidney-lung interaction in the setting of AKI therefore constitutes not only a pressing clinical problem, but also an illuminating framework in which to consider possible mechanisms by which renal diseases exert such deleterious effects on patient outcomes, even when dialysis is provided.