Clinical and vaccine immunology : CVI
-
Clin. Vaccine Immunol. · Dec 2006
Quantitative and functional differences between peripheral blood myeloid dendritic cells from patients with pleural and parenchymal lung tuberculosis.
Dendritic cells (DCs) play a pivotal role in generating protective host immunity to Mycobacterium tuberculosis. Few studies have addressed DC function in the context of active tuberculosis (TB), largely due to technical constraints in obtaining adequate numbers of DC from sick patients. ⋯ We found that pleural TB was associated with increased IL-12 production and CCR7 expression compared to lung parenchymal disease. Our findings suggest important differences in innate immunity between patients with different forms of active TB, and this may contribute to the differences in natural history observed between the two groups.
-
Clin. Vaccine Immunol. · Nov 2006
Randomized Controlled TrialA DNA vaccine for Ebola virus is safe and immunogenic in a phase I clinical trial.
Ebola viruses represent a class of filoviruses that causes severe hemorrhagic fever with high mortality. Recognized first in 1976 in the Democratic Republic of Congo, outbreaks continue to occur in equatorial Africa. A safe and effective Ebola virus vaccine is needed because of its continued emergence and its potential for use for biodefense. ⋯ CD8(+) T-cell GP-specific responses were detected by ICS assay in 6/20 vaccinees. This Ebola virus DNA vaccine was safe and immunogenic in humans. Further assessment of the DNA platform alone and in combination with replication-defective adenoviral vector vaccines, in concert with challenge and immune data from nonhuman primates, will facilitate evaluation and potential licensure of an Ebola virus vaccine under the Animal Rule.
-
Clin. Vaccine Immunol. · Apr 2006
Production of soluble triggering receptor expressed on myeloid cells by lipopolysaccharide-stimulated human neutrophils involves de novo protein synthesis.
The triggering receptor expressed on myeloid cells (TREM-1) is a recently identified receptor expressed on neutrophils and monocytes. Activation of the receptor induces neutrophils to release the enzyme myeloperoxidase and inflammatory cytokines such as interleukin-8. TREM-1 has an alternatively spliced variant that lacks the transmembrane region, resulting in the receptor being secreted in a soluble form (sTREM-1). ⋯ TREM-1 surface expression was constitutive and was not upregulated upon LPS stimulation. However, sTREM-1 release from neutrophils was significantly upregulated by LPS stimulation (P < 0.0001), an effect that was abrogated by cycloheximide. Soluble TREM-1 is therefore secreted by human neutrophils in response to LPS challenge in a process involving de novo protein synthesis that is not accompanied by an upregulation of the TREM-1 receptor on the surfaces of the cells.
-
Clin. Vaccine Immunol. · Feb 2006
Role of CYP2E1 immunoglobulin G4 subclass antibodies and complement in pathogenesis of idiosyncratic drug-induced hepatitis.
Idiosyncratic drug-induced hepatitis (IDDIH) is the third most common cause for acute liver failure in the United States. Previous studies have attempted to identify susceptible patients or early stages of disease with various degrees of success. To determine if total serum immunoglobulin subclasses, CYP2E1-specific subclass autoantibodies, complement components, or immune complexes could distinguish persons with IDDIH from others exposed to drugs, we studied persons exposed to halogenated volatile anesthetics, which have been associated with IDDIH and CYP2E1 autoantibodies. ⋯ C1q- and C3d-containing immune complexes were significantly elevated in anesthetic-exposed persons. In conclusion, our data suggest that anesthetic-exposed persons develop CYP2E1-specific IgG1 autoantibodies which may form detectable circulating immune complexes subsequently cleared by classical pathway activation of the complement system. Persons susceptible to anesthetic-induced IDDIH develop CYP2E1-specific IgG4 autoantibodies which form small, nonprecipitating immune complexes that escape clearance because of their size or by direct inhibition of complement activation.