Neuroscience bulletin
-
Neuroscience bulletin · Oct 2013
Local synchronization and amplitude of the fluctuation of spontaneous brain activity in attention-deficit/hyperactivity disorder: a resting-state fMRI study.
Regional homogeneity (ReHo) and the amplitude of low-frequency fluctuation (ALFF) are two approaches to depicting different regional characteristics of resting-state functional magnetic resonance imaging (RS-fMRI) data. Whether they can complementarily reveal brain regional functional abnormalities in attention-deficit/hyperactivity disorder (ADHD) remains unknown. In this study, we applied ReHo and ALFF to 23 medication-naïve boys diagnosed with ADHD and 25 age-matched healthy male controls using whole-brain voxel-wise analysis. ⋯ In conclusion, ReHo may be more sensitive to regional abnormalities, at least in boys with ADHD, than ALFF. And ALFF may be complementary to ReHo in measuring local spontaneous activity. Combination of the two may yield a more comprehensive pathophy-siological framework for ADHD.
-
Neuroscience bulletin · Oct 2013
Synaptic non-GluN2B-containing NMDA receptors regulate tyrosine phosphorylation of GluN2B 1472 tyrosine site in rat brain slices.
Activation of N-methyl-D-aspartate receptors (NMDARs) mediates changes in the phosphorylation status of the glutamate receptors themselves. Previous studies have indicated that during synaptic activity, tyrosine kinases (Src and Fyn) or phosphatases (PTPα and STEP) are involved in regulating the phosphorylation of NMDARs. In this study, we used immunoblotting to investigate the role of an NMDAR subpopulation on the phosphorylation level of the GluN2B subunit at the Y1336 and Y1472 sites in rat brain slices after NMDA treatment. ⋯ Extrasynaptic NMDAR activation did not reduce the phosphorylation of GluN2B at Y1472. In addition, ifenprodil, a selective antagonist of GluN2B-containing NMDARs, did not abolish the decreased phosphorylation of GluN2B at Y1472 triggered by NMDA. These results suggest that the activation of synaptic GluN2A-containing NMDARs is required for the decreased phosphorylation of GluN2B at Y1472 that is induced by NMDA treatment in rat brain slices.