Acta physiologica
-
Studies from genetically modified animals have been instrumental in highlighting genes and their products involved in the regulation of muscle fibre type and oxidative phenotypes; however, evidence in humans is limited. Our aim was therefore to investigate expression of those genes implicated in the regulation of oxidative fibre phenotypes in humans. ⋯ Skeletal muscle mRNA expression of PPARalpha, PPARdelta, PGC-1alpha and -1beta reflects differences in type I muscle fibres associated with pathologically and physiologically induced skeletal muscle fibre type differences.
-
We compared the antagonistic effects of state-dependent gamma-aminobutyric acid A (GABA(A)) receptor blockers picrotoxin, Zn(2+) and pregnenolone sulphate (PS) on GABA- and pentobarbital-activated currents in recombinant rat GABA(A) receptors in Xenopus oocytes. ⋯ Pregnenolone sulphate was a gamma2-subunit independent inhibitor in the GABA(A) receptor, whereas the Zn(2+) antagonism was profoundly influenced by the gamma2-subunit. It is likely that the 2' residue closest to the N-terminus of the protein at M(2) helix on both alpha1 and beta2 subunit are critical to the inhibitory actions of PS and the function of Cl(-) channels. These results are consistent with the hypothesis that PS behaves as a Cl(-) channel blocker that does not share with Zn(2+), the coincident channel property in the GABA(A) receptors.