Translational research : the journal of laboratory and clinical medicine
-
Gastric cancer is a major health concern worldwide. The survival rate of Gastric cancer greatly depends on the stage at which it is diagnosed. Early diagnosis is critical for improving survival outcomes. ⋯ Biomarker-based tests have emerged as a useful tool for identifying gastric cancer early, monitoring treatment response, assessing the recurrence risk, and personalizing treatment plans. In this current review, we have explored both classical and novel biomarkers for gastric cancer. We have centralized their potential clinical application and discussed the challenges in Gastric cancer research.
-
Excessive subendothelial retention of oxidized low-density lipoprotein (oxLDL) and subsequent oxLDL engulfment by macrophages leads to the formation of foam cells and the development of atherosclerosis. Our previous study showed that the plasma level of sialic acid-binding immunoglobulin-like lectin 5 (Siglec-5) was a novel biomarker for the prognosis of atherosclerosis in diabetic patients. However, the role and underlying mechanisms of Siglec-5 in atherosclerosis have not been elucidated. ⋯ Our results suggested that Siglec-5 was a novel receptor that mediated oxLDL transcytosis and promoted the formation of foam cells. Interventions that inhibit the interaction between oxLDL and Siglec-5, including anti-Siglec-5 antibody or soluble Siglec-5 protein treatment, may provide novel therapeutic strategies in treating atherosclerosis.
-
Acute kidney injury (AKI) represents a critical clinical disease characterized by the rapid decline in renal function, carrying a substantial burden of morbidity and mortality. The treatment of AKI is frequently limited by its variable clinical presentations and intricate pathophysiology, highlighting the urgent need for a deeper understanding of its pathogenesis and potential therapeutic targets. Dual-specific protein phosphatase 5 (DUSP5), a member of the serine-threonine phosphatase family, possesses the capability to dephosphorylate extracellular regulated protein kinases (ERK). ⋯ Moreover, DUSP5 knockdown was observed to attenuate the production of inflammatory factors and apoptotic cells in renal tubular epithelial cells by enhancing AMPK/ULK1-mediated autophagy, thus improving renal function. In a word, DUSP5 knockdown in AKI effectively impede disease progression by activating autophagy. This finding holds promise for introducing fresh perspectives and targets for AKI treatment.
-
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease characterized by severe organ damage and lacking curative treatment. While various immune cell types, especially dysfunctional B and T cells and neutrophils, have been related with disease pathogenesis, limited research has focused on the role of monocytes in SLE. Increased DNA extracellular traps, apoptosis and necrosis have been related to lupus pathogenesis. ⋯ The interaction of HD monocytes with P-selectin induced Syk activation and reduced the levels of DNA extruded in METs. However, in aSLE monocytes, PSGL-1/P-selectin interaction did not activate Syk or reduce the amount of extruded DNA. Our data suggest a dysfunctional PSGL-1/P-selectin axis in aSLE monocytes, unable to reduce secondary necrosis or the amount of DNA released into the extracellular medium in METs, potentially contributing to lupus pathogenesis.
-
Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum.
In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4+, CD3+ and CD8+ T-cells at the maternal-interface in placenta increta cases. ⋯ We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial-mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring.