Translational research : the journal of laboratory and clinical medicine
-
Radiation-induced pulmonary fibrosis (RIPF) is a serious treatment complication that affects about 9%-30% cancer patients receiving radiotherapy for thoracic tumors. RIPF is characterized by progressive and irreversible destruction of lung tissues and deterioration of lung function, which can compromise quality of life and eventually lead to respiratory failure and death. ⋯ Recently, an increasing body of evidence suggests that induction of senescence by radiation may play an important role in RIPF and clearance of senescent cells (SnCs) with a senolytic agent, small molecule that can selectively kill SnCs, has the potential to be developed as a novel therapeutic strategy for RIPF. This review discusses some of these new findings to promote further study on the role of cellular senescence in RIPF and the development of senolytic therapeutics for RIPF.
-
Pulmonary fibrosis refers to the development of diffuse parenchymal abnormalities in the lung that cause dyspnea, cough, hypoxemia, and impair gas exchange, ultimately leading to respiratory failure. Though pulmonary fibrosis can be caused by a variety of underlying etiologies, ranging from genetic defects to autoimmune diseases to environmental exposures, once fibrosis develops it is irreversible and most often progressive, such that fibrosis of the lung is one of the leading indications for lung transplantation. This review aims to provide a concise summary of the recent advances in our understanding of the genetics and genomics of pulmonary fibrosis, idiopathic pulmonary fibrosis in particular, and how these recent discoveries may be changing the clinical approach to diagnosing and treating patients with fibrotic interstitial lung disease.
-
Review
Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis.
Systemic sclerosis (SSc, scleroderma) is a complex multisystem disease characterized by autoimmunity, vasculopathy, and most notably, fibrosis. Multiple lines of evidence demonstrate a variety of emerging cellular and molecular pathways which are relevant to fibrosis in SSc. The myofibroblast remains the key effector cell in SSc. ⋯ Studies now show that (1) multiple cell types give rise to myofibroblasts, (2) fibroblasts and myofibroblasts are heterogeneous, and (3) that a large number of (primarily immune) cells have important influences on the transition of fibroblasts to an activated myofibroblasts. In SSc, this differentiation process involves multiple pathways, including well known signaling cascades such as TGF-β and Wnt/β-Catenin signaling, as well as epigenetic reprogramming and a number of more recently defined cellular pathways. After reviewing the major and emerging cellular and molecular mechanisms underlying SSc, this article looks to identify clinical applications where this new molecular knowledge may allow for targeted treatment and personalized medicine approaches.