Translational research : the journal of laboratory and clinical medicine
-
Neuroblastoma (NB) is the most common extracranial pediatric solid cancer originating from undifferentiated neural crest cells. NB cells express EZH2 and GLI1 genes that are known to maintain the undifferentiated phenotype of cancer stem cells (CSC) in NB. Recent studies suggest that tumor-derived extracellular vesicles (EVs) can regulate the transformation of surrounding cells into CSC by transferring tumor-specific molecules they contain. ⋯ Using these models, we observed an enrichment of GLI1 and EZH2 mRNAs in NB-derived EVs. As a consequence of the uptake of NB-derived EVs, the host cells increased the expression levels of GLI1 and EZH2. These results suggest the alteration of the expression profile of stromal cells through an EV-based mechanism, and point the GLI1 and EZH2 mRNAs in the EV cargo as diagnostic biomarkers in NB.
-
The microRNAs (miRNAs) that can regulate diabetic kidney disease (DKD) have not been fully characterized. The aim of this study was to identify the miRNAs that affect DKD and could be used as specific biomarkers or therapeutic agents. First, kidney tissues from two DKD mouse models and control mice were screened for differences in miRNA expression by microarray analysis followed by quantitative real-time reverse transcription-PCR. ⋯ Furthermore, the serum level of miRNA-125b-5p was significantly higher in patients with DKD (1.89±0.40-fold, P<0.05) compared with patients with other kidney diseases (0.94±0.13-fold) and healthy subjects (1.00±0.19-fold). Serum levels of miRNA-181b-5p were lower in patients with DKD (0.30±0.06-fold, P<0.05) compared with patients with other kidney diseases (1.06±0.20-fold) and healthy subjects (1.00±0.16-fold). These results suggest that miRNA-125b-5p and miRNA-181b-5p may represent novel diagnostic biomarkers and that miRNA-181b-5p may represent a therapeutic target for DKD.