Translational research : the journal of laboratory and clinical medicine
-
A fraction of the transcriptome is translated into proteins. The rest is classified as non-protein coding RNA (Ribonucleic Acid) but has gained increased attention as functional and regulatory group of transcripts. The gene regulatory role of non-coding RNAs (ncRNAs) has now been widely accepted in diverse biological processes in both physiology and disease. ⋯ The presence of RISC components including microRNAs in the nucleus supports this notion. They may integrate with chromatin modifiers, microprocessing machinery and mRNA stabilizing transcripts to play a multifunctional role in the nucleus. Although a limited number of studies appreciate this novel activity of microRNAs relevant to the cardiovascular system, they provide proof-of-concept that requires consideration while targeting miRNAs with therapeutic potential.
-
Lung cancer (LC) is the leading cause of cancer-related death worldwide and miRNAs play a key role in LC development. To better diagnose LC and to predict drug treatment responses we evaluated 228 articles encompassing 16,697 patients and 12,582 healthy controls. Based on the criteria of ≥3 independent studies and a sensitivity and specificity of >0.8 we found blood-borne miR-20a, miR-10b, miR-150, and miR-223 to be excellent diagnostic biomarkers for non-small cell LC whereas miR-205 is specific for squamous cell carcinoma. ⋯ In conclusion, we report diagnostic miRNA biomarkers for in-depth clinical evaluation. Furthermore, in an effort to avoid unnecessary toxicity we propose predictive biomarkers. The biomarker candidates support personalized treatment decisions of LC patients and await their confirmation in randomized clinical trials.
-
The liver is a vital organ that controls glucose and lipid metabolism, hormone regulation, and bile secretion. Liver injury can occur from various insults such as viruses, metabolic diseases, and alcohol, which lead to acute and chronic liver diseases. Recent studies have demonstrated the implications of long noncoding RNAs (lncRNAs) in the pathogenesis of liver diseases. ⋯ Its expression, however, is increased in liver diseases with various etiologies. In this review, we focused on the roles of H19 in the pathogenesis of liver diseases. This comprehensive review is aimed to provide useful perspectives and translational applications of H19 as a potential therapeutic target of liver diseases.
-
An elevated blood angiotensin I-converting enzyme (ACE) supports diagnosis of sarcoidosis and Gaucher disease. However, some ACE mutations increase ACE shedding, and patients with these mutations are therefore at risk of being incorrectly diagnosed with sarcoidosis because of elevated serum ACE levels. We applied a novel approach called "ACE phenotyping" to identify possible ACE mutations in 3 pulmonary clinic patients that had suspected sarcoidosis based on elevated blood ACE levels. ⋯ We also performed a comprehensive analysis of the existing database of all ACE mutations to estimate the proportion of mutations increasing ACE shedding. The frequency of ACE mutations resulting in increased blood ACE levels may be much higher than previously estimated. ACE phenotyping, together with whole exome sequencing, is a diagnostic approach that could prevent unnecessary invasive and/or costly diagnostic procedures, or potentially harmful treatment for patients misdiagnosed on the basis of elevated blood ACE levels.
-
The transferrin receptor (CD71) is known as a receptor for IgA1 on mesangial cells, but the role of CD71 in IgA nephropathy (IgAN) is unknown. We studied clinical implication of mesangial CD71 in 282 patients with biopsy-proven IgAN (2005-2018). The transcript and protein expression of glomerular CD71 was determined by real-time polymerase chain reaction and immunohistochemistry. ⋯ Finally, HMCs treated with sera from IgAN patients with the higher Oxford score (M1E1S1T0) more increased the mRNA expression of CD71 and inflammatory markers than those with sera from negative score (M0E0S0T0). However, silencing CD71 significantly reduced expression levels of the inflammatory cytokine genes. Our results show that mesangial CD71 is significantly associated with disease progression and may play a biologic role in IgAN.