Translational research : the journal of laboratory and clinical medicine
-
COVID-19 patients elicit strong responses to the nucleocapsid (N) protein of SARS-CoV-2 but binding antibodies are also detected in prepandemic individuals, indicating potential crossreactivity with common cold human coronaviruses (HCoV) and questioning its utility in seroprevalence studies. We investigated the immunogenicity of the full-length and shorter fragments of the SARS-CoV-2 N protein, and the crossreactivity of antibodies with HCoV. We identified a C-terminus region in SARS-CoV2 N of minimal sequence homology with HCoV that was more specific for SARS-CoV-2 and highly immunogenic. ⋯ Antibodies to SARS-CoV-2 N were higher in patients with more severe and longer duration of symptoms and in females. IgGs remained stable for at least 3 months, while IgAs and IgMs declined faster. In conclusion, N protein is a primary target of SARS-CoV-2-specific and HCoV crossreactive antibodies, both of which may affect the acquisition of immunity to COVID-19.
-
This study was aimed at generating and investigating the efficacy of a novel monoclonal bispecific antibody (BsAb) for the combined inhibition of tumor necrosis factor-α (TNF-α) and CXCL10 as a treatment option for rheumatoid arthritis (RA). A novel BsAb targeting TNF-α and CXCL10 was generated by conjugating a single-chain variable fragment (scFv) of the anti-CXCL10 monoclonal antibody to the Fc region of adalimumab (ADA). The effects of the BsAb on the inflammatory response in the in vitro and in vivo development of arthritis and joint destruction were evaluated in human TNF transgenic (hTNF-Tg) mice, and K/BxN serum transfer arthritis models. ⋯ In the K/BxN serum transfer model, BsAb effectively attenuated ankle swelling, synovial inflammation, cartilage damage, and bone destruction, reducing the activation of osteoclasts. The additional neutralization of TNF-α and CXCL10 from treatment with the novel BsAb was more effective than TNF-α inhibition alone in the in vitro and in vivo models of RA. Thus, the BsAb, targeting both TNF-α and CXCL10, may provide a new therapeutic opportunity for RA patients who fail to respond to the blockade of a single cytokine.
-
Although interest in "cytokine storms" has surged over the past decade, it was massively amplified in 2020 when it was suggested that a subset of patients with COVID-19 developed a form of cytokine storm. The concept of cytokine storm syndromes (CSS) encompasses diverse conditions or circumstances that coalesce around potentially lethal hyperinflammation with hemodynamic compromise and multiple organ dysfunction syndrome. Macrophage activation syndrome (MAS) is a prototypic form of CSS that develops in the context of rheumatic diseases, particularly systemic juvenile idiopathic arthritis. ⋯ Physicians immediately grappled with identifying optimal therapeutic strategies for these patients, and despite clinical distinctions such as marked coagulopathy with endothelial injury associated with COVID-19, borrowed from the experiences with MAS and other CSS. Initial reports of patients treated with anti-cytokine agents in COVID-19 were promising, but recent large, better-controlled studies of these agents have had mixed results suggesting a more complex pathophysiology. Here, we discuss how the comparison of clinical features, immunologic parameters and therapeutic response data between MAS and hyperinflammation in COVID-19 can provide new insight into the pathophysiology of CSS.
-
Chronic hepatitis C virus infection is characterized by multiple extra-hepatic manifestations. Innate immune dysfunction and hemolysis are symptoms which might be associated with each other. We investigated the impact of direct acting antivirals on neutrophil function and its connection to hemolysis. ⋯ Neutrophil dysfunction could be transferred to healthy cells by incubation with patients' serum fractions (>30 kDa) ex vivo. Neutrophil dysfunction and hemolysis represent extrahepatic manifestations of chronic hepatitis C virus infection and simultaneously improve during direct acting antiviral therapy independently of therapy-related liver function recovery. Therefore, large-scale treatment would not only drive viral eradication but also improve patients' immune system and may reduce susceptibility to infections.
-
Plasma leakage is a hallmark process in dengue viral (DENV) infection that occurs due to the loss of vascular integrity in endothelial cells. Endoglin (ENG) and Syndecan-1 (SDC-1) are released by activated endothelial cells; however, the complete dynamics of its expression at the gene and protein levels during the course of DENV infection remains unknown. In the present study, we quantified the mRNA and soluble protein levels of ENG and SDC-1 in dengue cases during febrile, defervescence, and convalescence stages in Dengue without Warning Sign (DWOW-15), Dengue with Warning Sign (DWW-22), and Severe Dengue cases (SD-10) compared to nondengue Other Febrile Illness (OFI-10) and healthy control (HC-8). ⋯ However, at the time of admission (febrile), no such significant changes were observed within dengue, OFI, and healthy controls. SVM analysis revealed that the serum levels of ENG and SDC-1 along with other clinical symptoms could predict the disease severity with 100% accuracy. Based on the results we have proposed a mechanism on how ENG and SDC-1 could be involved in vascular dysfunction rather than just being a biomarker.