Translational research : the journal of laboratory and clinical medicine
-
The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC. ⋯ AsODN, antisense oligodeoxynucleotides; BMPs, bone morphogenetic proteins; BMSCs, bone marrow stem cells; BG, bioglass; Cx, Connexin; CxRE, connexin-responsive elements; CoCr NPs, cobalt-chromium nanoparticles; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinase 1/2; EMT, epithelial-mesenchymal transition; EPA, eicosapentaenoic acids; FGFR1, fibroblast growth factor receptor 1; FRAP, fluorescence recovery after photobleaching; 5-FU, 5-fluorouracil; GJ, gap junction; GJIC, gap junctional intercellular communication; HGPRTase, hypoxanthine phosphoribosyltransferase; HSV-TK, herpes virus thymidine kinase; HSA, human serum albumin; HA, hyaluronic acid; HDAC, histone deacetylase; IRI, ischemia reperfusion injury; IL-6, interleukin-6; IL-8, interleukin-8; IONPs, iron-oxide nanoparticles; JNK, c-Jun N-terminal kinase; LAMP, local activation of molecular fluorescent probe; MSCs, mesenchymal stem cells; MMP, matrix metalloproteinase; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; NO, nitric oxide; PKC, protein kinase C; QDs, quantum dots; ROI, region of interest; RGO, reduced graphene oxide; siRNA, small interfering RNA; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; UCN, upconversion nanoparticles; VEGF, vascular endothelial growth factor. In this review, we discuss briefly the role of connexins and gap junctions in various physiological and pathological processes, with special emphasis on cancer. We further discuss the application of nanotechnology and tissue engineering in developing treatments for various connexin based disorders.
-
Sepsis represents a life-threatening event often mediated by the host's response to pathogens such as gram-negative organisms, which release the proinflammatory lipopolysaccharide (LPS). Within the endothelium, the mitogen-activated protein kinase (MAPK) pathway is an important driver of endothelial injury during sepsis, of which oxidant-sensitive apoptosis signal-regulating kinase 1 (ASK1) is postulated to be a critical upstream regulator. We hypothesized that ASK1 would play a key role in endothelial inflammation during bacterial challenge. ⋯ The reduction in JNK activation caused by ASK1 inhibition impaired JNK-mediated cytokine production without affecting permeability. Thus, LPS triggers JNK-dependent cytokine production that requires ASK1 activation, but both its effects on permeability and activation of p38 are ASK1-independent. These data demonstrate how distinct MAPK signaling pathways regulate endothelial inflammatory outputs during acute infectious challenge.
-
Studies suggest that biological sex influences susceptibility to kidney diseases with males demonstrating greater risk for developing ischemic acute kidney injury (AKI). Sex-related differences in mitochondrial function and homeostasis exist, likely contributing to sexual dimorphism in kidney injury, but the mechanisms are not well characterized. Our observations reveal lower baseline expression of Sirtuin-3 (Sirt3, a major mitochondrial acetyltransferase) in the kidneys of male mice versus females. ⋯ Female Sirt3 iKD mice demonstrate decreased survival and kidney function after IRI indistinguishable from control males, abolishing the protective effects observed in females. Mechanistically, observed differences in kidney mtSirt3 are sex hormone-dependent; estradiol increases - while testosterone decreases mtSirt3 protein. Our results demonstrate that Sirt3 is an important contributor to the observed sex-related differences in IRI susceptibility, and a potential therapeutic target in the clinical management of AKI.
-
Clinical utility of cisplatin based neoadjuvant chemotherapy (NAC) prior to radical cystectomy is limited because of lack of tools that can guide for a better patient selection. We aim to explore if a combination of biomarkers is superior to a single marker. Pretreatment tumor specimens and clinical data from two randomized trials including 250 patients with T2-T4 urothelial bladder cancer, were used. ⋯ The combination of CCTα with survivin or BCL-2 yielded similar results. In a group of patients with muscle invasive bladder cancer a combination of two biomarkers might improve the possibility to identify patients most likely to benefit from the use of NAC. Further studies designed to have sufficient power to detect an interaction effect are needed.
-
Diabetic cardiomyopathy (DCM) is a well-established complication of type 1 and type 2 diabetes associated with a high rate of morbidity and mortality. DCM is diagnosed at advanced and irreversible stages. Therefore, it is of utmost need to identify novel mechanistic pathways involved at early stages to prevent or reverse the development of DCM. ⋯ Of interest, these observations are attenuated when T1DM rats are treated with 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA), which blocks EETs metabolism, or N-hydroxy-N'-(4-butyl-2-methylphenol)Formamidine (HET0016), which inhibits 20-HETEs formation. Taken together, our findings confer pioneering evidence about a potential interplay between CYP450-derived metabolites and Nox4/TGF-β axis leading to DCM. Pharmacologic interventions targeting the inhibition of 20-HETEs synthesis or the activation of EETs synthesis may offer novel therapeutic approaches to treat DCM.