Translational research : the journal of laboratory and clinical medicine
-
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease characterized by vascular dysplasia. Mutations of the endoglin (ENG) gene that encodes a co-receptor of the transforming growth factor β1 signaling pathway cause type I HHT. ENG is primarily expressed in endothelial cells (ECs), but its interaction with other key angiogenic pathways to control angiogenesis has not been well addressed. ⋯ Functional analysis revealed that ENG knockdown inhibited cell migratory but enhanced anti-apoptotic activity induced by VEGF. In contrast, bFGF, angiopoietin-1 and -2 induced HUVEC migration and anti-apoptotic activities were not affected by ENG knockdown. In conclusion, ENG deficiency alters the VEGF/VEGFR2 pathway, which may play a role in HHT pathogenesis.
-
Rituximab is an important second line therapy in difficult nephrotic syndrome (NS), especially given toxicity of long-term glucocorticoid or calcineurin inhibitor (CNI) use. However, clinical response to rituximab is heterogenous. We hypothesized that this was underpinned by immunological differences amongst patients with NS. ⋯ In particular, IL-13 showed a significant decrease in sustained remission group [-0.56 (-0.64, -0.35)pg/ml, P=0.007)], but not in the early relapse group. In conclusion, early relapse following rituximab is associated with baseline reductions in Treg and T-cell hyporesponsiveness, which suggest chronic T-cell activation and may be useful predictive biomarkers. Sustained remission, on the other hand, is associated with downregulation of Th2 cytokines following rituximab.
-
Diabetic cardiomyopathy (DCM) is a well-established complication of type 1 and type 2 diabetes associated with a high rate of morbidity and mortality. DCM is diagnosed at advanced and irreversible stages. Therefore, it is of utmost need to identify novel mechanistic pathways involved at early stages to prevent or reverse the development of DCM. ⋯ Of interest, these observations are attenuated when T1DM rats are treated with 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA), which blocks EETs metabolism, or N-hydroxy-N'-(4-butyl-2-methylphenol)Formamidine (HET0016), which inhibits 20-HETEs formation. Taken together, our findings confer pioneering evidence about a potential interplay between CYP450-derived metabolites and Nox4/TGF-β axis leading to DCM. Pharmacologic interventions targeting the inhibition of 20-HETEs synthesis or the activation of EETs synthesis may offer novel therapeutic approaches to treat DCM.
-
G protein-coupled estrogen receptor (GPER) activation by G1 attenuates diastolic dysfunction from estrogen loss, which may be partly due to suppression of angiotensin II pathological actions. We aimed to determine the independent effects of 8 weeks of G1 (100 µg/kg/d, subcutaneous pellet), ACE-inhibition (ACEi; lisinopril 10 mg/kg, drinking water), or combination therapy versus vehicle in the ovariectomized (OVX) spontaneously hypertensive rat (SHR) on cardiac function and morphometrics (echocardiography), serum equilibrium of angiotensins (mass spectroscopy) and cardiac components of the RAS (Western blotting). G1 alone and when combined with ACEi enhanced myocardial relaxation (é: 30 and 17%) and diastolic wall strain (DWS: 76 and 68%) while reducing relative wall thickness (RWT: 20 and 33%) and filling pressures (E/é: 30 and 37%). ⋯ Chronic ACEi also increased cardiac levels of Mas-R and AT1-R and tilted the circulating RAS toward the formation of Ang-(1-7), which was amplified in the presence of G1. In vitro studies further revealed that an inhibitor to prolyl endopeptidase (PEP), but not to neprilysin, significantly reduced serum Ang-(1-7) levels in G1-treated rats, suggesting that G1 might be increasing Ang-(1-7) formation via PEP. We conclude that activating GPER with G1 augments components of the cardiac RAS and improves diastolic function without lowering blood pressure, and that lisinopril-induced blood pressure control and cardiac alterations in OVX SHR are permissive in facilitating G1 to augment Ang-(1-7) in serum, thereby strengthening its cardioprotective benefits.
-
Traumatic brain injury (TBI) is one of the leading causes of disability and paralysis around the world. Secondary injury, characterized by progressive neuronal loss and astrogliosis, plays important roles in the post-TBI cognitive impairment and mood disorder. Unfortunately, there still lacks effective treatments, particularly surgery interferences for it. ⋯ Mitochondria transplantation effectively rescued neuronal apoptosis, restored the expression of Tom20 and the phosphorylation of JNK. Further analysis revealed that mitochondria transplantation in injured cortex induced a significant up-regulation of BDNF in reactive astrocytes, improved animals' spatial memory and alleviated anxiety. In together, our data indicate that mitochondria transplantation may has the potential of clinical translation for TBI treatment, in combination with surgery.