Translational research : the journal of laboratory and clinical medicine
-
The worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected an estimated 200 million people with over 4 million deaths. Although COVID-19, the disease caused by the SARS-CoV-2 virus, is primarily a respiratory disease, an increasing number of neurologic symptoms have been reported. Some of these symptoms, such as loss of smell or taste, are mild and non-life threatening, while others, such as stroke or seizure, are more critical. ⋯ Neurological symptoms can be difficult to study due to the complexity of the central and peripheral nervous system. These neurologic symptoms can be difficult to identify and quantitate. This narrative review will describe approaches for assessing neurologic manifestations of COVID-19, with examples of the data they provide, as well as some directions for future research to aid in understanding the pathophysiology of COVID-19-related neurological implications.
-
Impaired glucose regulation (IGR) is common world-wide, and is correlated with Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the virus that causes Coronavirus disease 2019 (COVID-19). However, no systematic reviews are available on the topic, and little is known about the strength of the evidence underlying published associations. ⋯ It is uncertain whether interventions targeting dysglycemia to improve SARS-CoV-2 outcomes have potential to be effective, or if risk assessment should include biomarkers of diabetes risk (ie, insulin and glucose or HbA1c) among diabetes-free individuals. Future studies with robust risk factor data collection, among population-based samples with pre-pandemic assessments will be important to inform these questions.
-
The current era of COVID-19 is characterized by emerging variants of concern, waning vaccine- and natural infection-induced immunity, debate over the timing and necessity of vaccine boosting, and the emergence of post-acute sequelae of SARS-CoV-2 infection. As a result, there is an ongoing need for research to promote understanding of the immunology of both natural infection and prevention, especially as SARS-CoV-2 immunology is a rapidly changing field, with new questions arising as the pandemic continues to grow in complexity. The next phase of COVID-19 immunology research will need focus on clearer characterization of the immune processes defining acute illness, development of a better understanding of the immunologic processes driving protracted symptoms and prolonged recovery (ie, post-acute sequelae of SARS-CoV-2 infection), and a growing focus on the impact of therapeutic and prophylactic interventions on the long-term consequences of SARS-CoV-2 infection. In this review, we address what is known about the long-term immune consequences of SARS-CoV-2 infection and propose how experience studying the translational immunology of other infections might inform the approach to some of the key questions that remain.