Translational research : the journal of laboratory and clinical medicine
-
SARS-CoV-2, the cause of COVID-19, has generated a global emergency. The endothelium is a target of SARS-CoV-2, generating endothelial dysfunction, an essential step for the development of cardiovascular complications. The number of endothelial progenitor cells acts as an indicator of vascular damage. ⋯ There was no difference in ECFC production in COVID-19 who presented acute PE compared to those that did not (3.21 ± 2.49 vs 2.50 ± 2.23, P > 0.05). The appearance of ECFC colonies in COVID-19 patients was significantly related to male gender (P = 0.003), the presence of systemic hypertension (P = 0.01) and elevated hemoglobin levels (P = 0.02) at the time of ECFC isolation and lower PaO2 levels (P = 0.01) at admission. Whether these results indicate a prompt response of the patient to repair the damaged endothelium or reflect a postinfection injury that will persist in time is not known.
-
Loss of functional pancreatic β-cell mass and increased β-cell apoptosis are fundamental to the pathophysiology of type 1 and type 2 diabetes. Pancreatic islet transplantation has the potential to cure type 1 diabetes but is often ineffective due to the death of the islet graft within the first few years after transplant. Therapeutic strategies to directly target pancreatic β-cell survival are needed to prevent and treat diabetes and to improve islet transplant outcomes. ⋯ However, whether CCK can protect human β-cells was previously unknown. Here, we report that CCK can also reduce cytokine-mediated apoptosis in isolated human islets and CCK treatment in vivo decreases β-cell apoptosis in human islets transplanted into the kidney capsule of diabetic NOD/SCID mice. Collectively, these data identify CCK as a novel therapy that can directly promote β-cell survival in human islets and has therapeutic potential to preserve β-cell mass in diabetes and as an adjunct therapy after transplant.