Translational research : the journal of laboratory and clinical medicine
-
The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. ⋯ Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.
-
Fetal hemoglobin (HbF) is known to lessen the severity of sickle cell disease (SCD), through reductions in peripheral vaso-occlusive disease and reduced risk for cerebrovascular events. However, the influence of HbF on oxygen delivery to high metabolism tissues like the brain, or its influence on cerebral perfusion, metabolism, inflammation or function have not been widely studied. ⋯ Brain microstructure assessed by DTI fractional anisotropy improved, while myo-inositol levels increased, suggesting improved microstructural integrity and reduced cell loss. Our results suggest that increasing γ levels not only improves sickle peripheral disease, but also improves brain perfusion and oxygen delivery while reducing brain inflammation while protecting brain microstructural integrity.
-
The aim of this study was to identify miRNAs that regulate AKI and develop their applications as diagnostic biomarkers and therapeutic agents. First, kidney tissues from two different AKI mouse models, namely, AKI induced by the administration of lipopolysaccharide (LPS) causing sepsis (LPS-AKI mice) and AKI induced by renal ischemia-reperfusion injury (IRI-AKI mice), were exhaustively screened for their changes of miRNA expression compared with that of control mice by microarray analysis followed by quantitative RT-PCR. The initial profiling newly identified miRNA-5100, whose expression levels significantly decreased in kidneys in both LPS-AKI mice and IRI-AKI mice. ⋯ Furthermore, serum levels of miRNA-5100 in patients with AKI were identified as significantly lower than those of healthy subjects. ROC analysis showed that the serum expression level of miRNA-5100 can identify AKI (cut-off value 0.14, AUC 0.96, sensitivity 1.00, specificity 0.833, p<0.05). These results suggest that miRNA-5100 regulates AKI and may be useful as a novel diagnostic biomarker and therapeutic target for AKI.
-
Cardiovascular disease remains the leading cause of death globally, and heart failure (HF) represents its terminal stage. Asthma, one of the most common chronic diseases, has been reported to be associated with an increased risk of cardiovascular disease. However, the link between asthma and HF has rarely been studied, and the possible mechanisms by which asthma affects HF are unclear. ⋯ We also found that OVA sensitization increased the expression levels of immunoglobulin E (IgE) in serum and IgE receptor (FcεR1) in the heart, and enhanced the activation of downstream signaling molecules of IgE-FcεR1 in the heart. Importantly, blockage of IgE-FcεR1 using FcεR1-deficient mice or an anti-IgE antibody prevented asthma-induced decline of cardiac function, and alleviated cardiac remodeling. These findings demonstrate the adverse effects of allergic asthma on the heart, and suggest the potential application of anti-IgE therapy in the treatment of asthma complicated with heart conditions.