Translational research : the journal of laboratory and clinical medicine
-
We previously demonstrated that Annexin A2 (ANXA2) is a pivotal mediator of the pro-oncogenic features displayed by glioblastoma (GBM) tumors, the deadliest adult brain malignancies, being involved in cell stemness, proliferation and invasion, thus negatively impacting patient prognosis. Based on these results, we hypothesized that compounds able to revert ANXA2-dependent transcriptional features could be exploited as reliable treatments to inhibit GBM cell aggressiveness by hampering their proliferative and migratory potential. Transcriptional signatures obtained by the modulation of ANXA2 activity/levels were functionally mapped through the QUADrATiC bioinformatic tool for compound identification. ⋯ A further molecular characterization of the effects displayed by HHT, confirmed its ability to inhibit a transcriptional program involved in cell migration and invasion. Moreover, we demonstrated that the multiple antitumoral effects displayed by HHT are correlated to the inhibition of a platelet derived growth factor receptor α (PDGFRα)-dependent intracellular signaling through the impairment of Signal transducer and activator of transcription 3 (STAT3) and Ras homolog family member A (RhoA) axes. Our results demonstrate that HHT may act as a potent inhibitor of cancer cell proliferation and invasion in GBM, by hampering multiple PDGFRα-dependent oncogenic signals transduced through the STAT3 and RhoA intracellular components, finally suggesting its potential transferability for achieving an effective impairment of peculiar GBM hallmarks.
-
Review
Single-cell RNA sequencing in the context of neuropathic pain: Progress, challenges, and prospects.
Neuropathic pain, characterized by persistent or intermittent spontaneous pain as well as some unpleasant abnormal sensations, is one of the most prevalent health problems in the world. Ectopic nerve activity, central and peripheral nociceptive sensitization and many other potential mechanisms may participate in neuropathic pain. The complexity and ambiguity of neuropathic pain mechanisms result in difficulties in pain management, and existing treatment plans provide less-than-satisfactory relief. ⋯ Although scRNA-seq is a relatively new technique in the neuropathic pain field, there have been several studies based on animal models. However, because of the various differences between animals and humans, more attention should be given to translational medicine research. With the aid of scRNA-seq, researchers can further explore the mechanism of neuropathic pain to improve the clinical understanding of the diagnosis, treatment and management of neuropathic pain.
-
Inflammasomes are multiprotein complexes of the innate immune response that recognize a diverse range of intracellular sensors of infection or cell damage and recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) into an inflammasome signaling complex. The recruitment, polymerization and cross-linking of ASC is upstream of caspase-1 activation and interleukin-1β release. Here we provide evidence that IC 100, a humanized IgG4κ monoclonal antibody against ASC, is internalized into the cell and localizes with endosomes, while another part is recycled and redistributed out of the cell. ⋯ In A549 WT and TRIM21 KO cells treated with either IC 100 or IgG4κ isotype control, the levels of intracellular IC 100 were higher than in the IgG4κ-treated controls at 2 hours, 1 day and 3 days after administration, indicating that IC 100 escapes degradation by the proteasome. Lastly, electron microscopy studies demonstrate that IC 100 binds to ASC filaments and alters the architecture of ASC filaments. Thus, IC 100 readily penetrates a variety of cell types, and it binds to intracellular ASC, but it is not degraded by the TRIM21 antibody-dependent intracellular neutralization pathway.
-
Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. ⋯ More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.