Translational research : the journal of laboratory and clinical medicine
-
Bone malunion or nonunion leads to functional and esthetic problems and is a major healthcare burden. Activation of bone marrow mesenchymal stem cells (BMSCs) and subsequent induction of osteogenic differentiation by local metabolites are crucial steps for bone healing, which has not yet been completely investigated. Here, we found that lactate levels are rapidly increased at the local injury site during the early phase of bone defect healing, which facilitates the healing process by enhancing BMSCs regenerative capacity. ⋯ Conversely, ablation of Olfr1440 delays skeletal repair and remodelling, as evidenced by thinner cortical bone and less woven bone formation in vivo. Administration of lactate in the defect area enhanced bone regeneration. These findings thus revealed the key roles of lactate in the osteogenic differentiation of BMSCs, which deepened our understanding of the bone healing process, as well as provided cues for a potential therapeutic option that might greatly improve bone defect treatment.
-
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at metastatic stage and typically treated with fluorouracil, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX). Few patients benefit from this treatment. Molecular subtypes are prognostic in particularly resectable PDAC and might predict treatment response. ⋯ GATA6 knockdown models did not lead to increased FOLFIRINOX responsiveness. These data suggest a predictive role for subtyping (transcriptomic and GATA6 IHC), though no direct causal relationship was found between GATA6 expression and chemoresistance. GATA6 immunohistochemistry should be seamlessly added to current diagnostics and integrated into upcoming clinical trials.
-
Epithelial ovarian cancer is a significant global health issue among women. Diagnosis and treatment pose challenges due to difficulties in predicting patient responses to therapy, primarily stemming from gaps in understanding tumor chemoresistance mechanisms. Recent advancements in transcriptomic technologies like single-cell RNA sequencing and spatial transcriptomics have greatly improved our understanding of ovarian cancer intratumor heterogeneity and tumor microenvironment composition. ⋯ Studies investigating the spatial distribution of gene expression in ovarian cancer masses have identified specific features that impact prognosis and therapy outcomes. Emerging evidence suggests that specific spatial patterns of tumor cells and their immune and non-immune microenvironment significantly influence therapy response, as well as the behavior and progression of primary tumors and metastatic sites. The importance of spatially contextualizing ovarian cancer transcriptomes is underscored by these findings, which will advance our understanding and therapeutic approaches for this complex disease.
-
Extrachromosomal circular DNA (eccDNA) derived from linear chromosomes, are showed typical nucleosomal ladder pattern in agarose gel which as a known feature of apoptosis and demonstrated to be immunogenicity. In systemic lupus erythematosus (SLE) patients, elevated levels of cell-free DNA (cfDNA) can be found in either linear forms or circular forms, while circular ones are much less common and harder to detect. The molecular characteristics and function of circular forms in plasma SLE patients remains elusive. ⋯ The differential eccGenes (eccDNAs carrying the protein coding gene sequence) of SLE was significantly enriched in apoptosis-related pathways. The artificially synthesized eccDNA with sequences of the PRF1 exon region could promote transcriptional expression of PRF1, IFNA and IFIT3 and inhibit early-stage apoptosis. Plasma eccDNA can serve as a novel autoantigen in the pathogenesis of SLE.
-
Renal aging and the subsequent rise in kidney-related diseases are attributed to senescence in renal tubular epithelial cells (RTECs). Our study revealed that the abnormal expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader of RNA N6-methyladenosine, is critically involved in cisplatin-induced renal tubular senescence. In cisplatin-induced senescence of RTECs, the promoter activity and transcription of IGF2BP3 is markedly suppressed. ⋯ The involvement of IGF2BP3/CDK6 in alleviating tubular senescence was confirmed in a cisplatin-induced acute kidney injury (AKI)-to-chronic kidney disease (CKD) model. Clinical data also suggests an age-related decrease in IGF2BP3 and CDK6 levels in renal tissue or serum samples from patients. These findings suggest that IGF2BP3/CDK6 may be a promising target in cisplatin-induced tubular senescence and renal failure.