Translational research : the journal of laboratory and clinical medicine
-
Renal aging and the subsequent rise in kidney-related diseases are attributed to senescence in renal tubular epithelial cells (RTECs). Our study revealed that the abnormal expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader of RNA N6-methyladenosine, is critically involved in cisplatin-induced renal tubular senescence. In cisplatin-induced senescence of RTECs, the promoter activity and transcription of IGF2BP3 is markedly suppressed. ⋯ The involvement of IGF2BP3/CDK6 in alleviating tubular senescence was confirmed in a cisplatin-induced acute kidney injury (AKI)-to-chronic kidney disease (CKD) model. Clinical data also suggests an age-related decrease in IGF2BP3 and CDK6 levels in renal tissue or serum samples from patients. These findings suggest that IGF2BP3/CDK6 may be a promising target in cisplatin-induced tubular senescence and renal failure.
-
Periodontitis is a chronic inflammatory oral disease that impaired the tooth-supporting apparatus, including gingival tissue destruction and alveolar bone resorption. The initiation of periodontitis is linked to the presence of oral bacteria, particularly P. gingivalis within pathogenic biofilms. Here, we demonstrated the central role of the autophagy regulator Transcription Factor EB (TFEB) in orchestrating autophagy activation and modulating the host immune response against P. gingivalis in periodontitis. ⋯ Functionally, TFEB overexpression emerges as a potent alleviator of periodontitis-associated phenotypes, operating through the activation of autophagy and the inhibition of the NF-κB pathway in both in vivo and in vitro models. In addition, TFEB knockdown exacerbates the inflammatory response by upregulating pro-inflammatory cytokines. The dual regulatory role of TFEB in governing both autophagy and inflammatory responses unveils novel insights into periodontitis pathogenesis, positioning TFEB as a promising therapeutic target for periodontitis intervention.
-
Bone malunion or nonunion leads to functional and esthetic problems and is a major healthcare burden. Activation of bone marrow mesenchymal stem cells (BMSCs) and subsequent induction of osteogenic differentiation by local metabolites are crucial steps for bone healing, which has not yet been completely investigated. Here, we found that lactate levels are rapidly increased at the local injury site during the early phase of bone defect healing, which facilitates the healing process by enhancing BMSCs regenerative capacity. ⋯ Conversely, ablation of Olfr1440 delays skeletal repair and remodelling, as evidenced by thinner cortical bone and less woven bone formation in vivo. Administration of lactate in the defect area enhanced bone regeneration. These findings thus revealed the key roles of lactate in the osteogenic differentiation of BMSCs, which deepened our understanding of the bone healing process, as well as provided cues for a potential therapeutic option that might greatly improve bone defect treatment.
-
Fu's subcutaneous needling (FSN) is a traditional Chinese acupuncture procedure used to treat pain-related neurological disorders. Moreover, the regulation of inflammatory cytokines may provide a favorable environment for peripheral nerve regeneration. In light of this, FSN may be an important novel therapeutic strategy to alleviate pain associated with peripheral neuropathy; however, the underlying molecular mechanisms remain unclear. ⋯ Mechanistically, RNA sequencing and gene set enrichment analysis revealed significantly reduced inflammatory pathways, neurotransmitters, and endoplasmic reticulum stress pathways and increased nerve regeneration factors in the FSN+CCI group, compared with that in the CCI group. Finally, immunohistochemistry, immunoblotting and enzyme-linked immunosorbent assay showed similar results in the dorsal root ganglia and sciatic nerve. Our findings suggest that FSN can effectively ameliorate peripheral neuropathic pain by regulate inflammation and endoplasmic reticulum stress, thereby determine its beneficial application in patients with peripheral nerve injuries.
-
Doxorubicin (DOX) is restricted due to its severe cardiotoxicity. There is still a lack of viable and effective drugs to prevent or treat DOX-induced cardiotoxicity(DIC). Vericiguat is widely used to treat heart failure with reduced ejection fraction. ⋯ In the present study, we constructed a DIC model using mice and neonatal rat cardiomyocytes and found that vericiguat ameliorated DOX-induced cardiac insufficiency in mice, restored DOX-induced mitochondrial dysfunction in neonatal rat cardiomyocytes, and inhibited the expression of inflammatory factors. Further studies showed that vericiguat improved mitochondrial dysfunction and reduced mtDNA leakage into the cytoplasm by up-regulating PRKG1, which activated PINK1 and then inhibited the STING/IRF3 pathway to alleviate DIC. These findings demonstrate for the first time that vericiguat has therapeutic potential for the treatment of DIC.