Translational research : the journal of laboratory and clinical medicine
-
Prolonged sevoflurane anesthesia is the primary factor contributing to the development of perioperative neurocognitive disorders (PND). Recent studies have highlighted neuronal apoptosis and abnormal dendritic structures as crucial features of PND. Astrocytes-derived exosomes (ADEs) have been identified as carriers of microRNAs (miRNAs), playing a vital role in cell-to-cell communication through transmitting genetic material. ⋯ Subsequent gain- and loss-of-function experiments were conducted to validate the role of the miR-26a-5p/NCAM axis. Finally, we found that the AKT/GSK3-β/CRMP2 signaling pathway was involved in regulating neurons through exosomal miR-26a-5p. Taken together, our findings suggest that the treatment with miR-26a-5p in ADEs can improve neurocognitive outcomes induced by long-term sevoflurane anesthesia, suggesting a promising approach for retarding the progress of PND.
-
Traumatic brain injury (TBI) has a significant impact on cognitive function, affecting millions of people worldwide. Myelin loss is a prominent pathological feature of TBI, while well-functioning myelin is crucial for memory and cognition. Utilizing drug repurposing to identify effective drug candidates for TBI treatment has gained attention. ⋯ In contrast, animals treated with clemastine showed an increase in mature oligodendrocytes, enhanced myelination, and improved performance in the behavioral tests. These preliminary findings support the therapeutic value of clemastine in alleviating TBI-induced cognitive impairment, with substantial clinical translational potential. Our findings also underscore the potential of remyelinating therapies for TBI.