Translational research : the journal of laboratory and clinical medicine
-
The prevalence of renal ischemia/reperfusion injury (IRI) in premenopausal women is considerably lower than that in age-matched men. This suggests that sex-related differences in mitochondrial function and homeostasis may contribute to sexual dimorphism in renal injury, though the mechanism remains unclear. Mouse model of unilateral left renal IRI with contralateral kidney enucleation, Ovariectomy in female mice, and a human embryonic kidney (HEK) cell model of hypoxia-reoxygenation were used to study how estrogen affects the sexual dimorphism of renal IRI through SIRT3 in vitro and in vivo, respectively. ⋯ Mechanistically, the SIRT3 level is E2-dependent and that E2 increases the SIRT3 protein level via estrogen receptor. SIRT3 targeted an i-AAA protease, yeast mitochondrial AAA metalloprotease (YME1L1), and hydrolyzed long optic atrophy 1 (L-OPA) to short-OPA1 (S-OPA1) by deacetylating YME1L1, regulating mitochondrial dynamics toward fusion to reduce oxidative stress and ERS. These findings explored the mechanism by how estrogen alleviates renal IRI and providing a basis for potential therapeutic interventions targeting SIRT3.
-
Cancer-associated fibroblasts (CAFs), as significant constituents of the tumor microenvironment (TME), play a pivotal role in the progression of cancers, including colorectal cancer (CRC). In this comprehensive review, we presented the origins and activation mechanisms of CAFs in CRC, elaborating on how CAFs drive tumor progression through their interactions with CRC cells, immune cells, vascular endothelial cells, and the extracellular matrix within the TME. We systematically outline the intricate web of interactions among CAFs, tumor cells, and other TME components, and based on this complex interplay, we summarize various therapeutic strategies designed to target CAFs in CRC. ⋯ Nevertheless, the comprehensive landscape of CAF heterogeneity still awaits exploration. We also highlight pivotal unanswered questions that need to be addressed before CAFs can be recognized as feasible targets for cancer treatment. In conclusion, the aim of our review is to elucidate the significance and challenges of advancing in-depth research on CAFs, while outlining the pathway to uncover the complex roles of CAFs in CRC and underscore their significant potential as therapeutic targets.
-
Mitochondrial dysfunction is recognized as a pivotal contributor to the pathogenesis of renal ischemia-reperfusion (IR) injury. Mitophagy, the process responsible for removing damaged protein aggregates, stands as a critical mechanism safeguarding cells against IR injury. Currently, the role of deubiquitination in regulating mitophagy still needs to be completely elucidated. ⋯ Tfap2a overexpression or Tbk1 inhibition reversed the protective effects of Usp14 silencing on renal tubular cell injury and its facilitation of mitophagy. In summary, our study demonstrated the renoprotective role of Usp14 knockdown in mitigating renal IR injury by promoting Tfap2a-mediated Tbk1 upregulation and mitophagy. These findings advocate for exploring Usp14 inhibition as a promising therapeutic avenue for mitigating IR injury, primarily by enhancing the clearance of damaged mitochondria through augmented mitophagy.