Translational research : the journal of laboratory and clinical medicine
-
Growth hormone-secreting pituitary adenoma (GHPA), a benign endocrine tumor located in the base of the skull, results in acromegaly. In addition to the mass effect of the tumor itself in the sellar region, GHPA can lead to the overgrowth of almost every organ. Previous findings indicated that the processes underlying acromegaly were partly attributable to hyperactivity of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis. ⋯ The mechanism of increased trabecula formation may be attributable to GHPA exosome-induced osteoblast proliferation via increased cell viability and DNA replication. We further discovered that exosomal hsa-miR-21-5p plays a distinct role from the GH/IGF-1 axis in these processes. Accordingly, the results of this study provide a novel mechanism whereby GHPA influences distal extremities and a new perspective for treating GHPA.
-
Recently, the CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study) showed the successful anti-inflammatory benefit of canakinumab, a monoclonal antibody targeting interleukin-1ß (IL-1ß) toward major cardiovascular events (MACE) in patients with a previous myocardial infarction (MI). The magnitude of reduction in MACE was directly attributed to a reduction witnessed in IL-6 and C-reactive protein (CRP) and highlighted the therapeutic potential of selectively targeting IL-1ß for atherosclerotic disease, a notion previously introduced in animal models. IL-1ß is involved in the downstream activation of the IL-6 receptor, which itself has been previously implicated as a target for atherothrombosis from Mendelian randomization studies. ⋯ With further discussion of the existing knowledge on the proinflammatory relationship of the NLRP3 inflammasome with atherosclerosis, this review summarizes and critically evaluates the preclinical and interventional findings of endogenous NLRP3 inflammasome inhibition in attempts to elucidate anti-inflammatory mechanisms, and therapeutic targets against atherothrombosis. Further investigation focusing on the endogenous mechanisms of inhibition of the NLRP3 inflammasome would uncover diagnostic routes from defective means in inflammatory resolution. Specifically, pro-resolving lipid mediators, autophagy, and phosphorylation/dephosphorylation mechanisms are 3 points of worthy investigation from existing evidence.
-
During acute myocardial infarction (AMI), Ischemia/Reperfusion (I/R) injury causes cardiomyocyte (CM) death and loss of tissue function, making AMI one of the major causes of death worldwide. Cell-based in vitro models of I/R injury have been increasingly used as a complementary approach to preclinical research. However, most approaches use murine cells in 2D culture setups, which are not able to recapitulate human cellular physiology, as well as nutrient and gas gradients occurring in the myocardium. ⋯ Conditioned medium was further used to probe human cardiac progenitor cells (hCPCs) response to paracrine cues from injured hiPSC-CMs through quantitative whole proteome analysis (SWATH-MS). I/R injury hiPSC-CM conditioned media incubation caused upregulation of hCPC proteins associated with migration, proliferation, paracrine signaling, and stress response-related pathways, when compared to the control media incubation. Our results indicate that the model developed herein can serve as a novel tool to interrogate mechanisms of action of human cardiac populations upon AMI.
-
Review
Peptide carriers to the rescue: overcoming the barriers to siRNA delivery for cancer treatment.
Cancer is a significant health concern worldwide and its clinical treatment presents many challenges. Consequently, much research effort has focused on the development of new anticancer drugs to combat this disease. One area of exploration, in particular, has been in the therapeutic application of RNA interference (RNAi). ⋯ Among these candidate drug delivery systems, peptides have shown great promise as siRNA carriers due to their varied physiochemical properties and functions, simple formulations, and flexibility in design. In this review, we will focus on distinguishing between the different classes of peptide carriers based on their functions, as well as summarize and discuss the various design strategies and advancements that have been made in circumventing the barriers to siRNA delivery for cancer treatment. Resolution of these challenges by peptide carriers will accelerate the translation of RNAi-based therapies to the clinic.
-
RNA interference (RNAi) is a cellular mechanism for post-transcriptional gene regulation mediated by small interfering RNA (siRNA) and microRNA. siRNA-based therapy holds significant promise for the treatment of a wide-range of arthritic diseases. siRNA selectively suppresses the expression of a gene product and can thus achieve the specificity that is lacking in small molecule inhibitors. The potential use of siRNA-based therapy in arthritis, however, has not progressed to clinical trials despite ample evidence for efficacy in preclinical studies. ⋯ Herein, we review recent preclinical studies that use RNAi-based drug delivery systems to mitigate inflammation in models of rheumatoid arthritis and osteoarthritis. We discuss a self-assembling peptide-based nanostructure that demonstrates the potential of overcoming many of the critical barriers preventing the translation of this technology to the clinic.