Translational research : the journal of laboratory and clinical medicine
-
Type 1 diabetes mellitus (T1D) is an autoimmune disease often diagnosed in childhood that results in pancreatic β-cell destruction and life-long insulin dependence. T1D susceptibility involves a complex interplay between genetic and environmental factors and has historically been attributed to adaptive immunity, although there is now increasing evidence for a role of innate inflammation. Here, we review studies that define a heightened age-dependent innate inflammatory state in T1D families that is paralleled with high fidelity by the T1D-susceptible biobreeding rat. ⋯ Therapeutic targeting of innate inflammation has been proven effective in preventing and delaying T1D in rat models. Clinical trials of agents that suppress innate inflammation have had more modest success, but efficacy may be improved by the addition of combinatorial approaches that target other aspects of T1D pathogenesis. An understanding of innate inflammation and mechanisms by which this susceptibility is both potentiated and mitigated offers important insight into T1D progression and avenues for therapeutic intervention.
-
Review
Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease.
Interferon regulatory factor 5 (IRF5) has been demonstrated as a key transcription factor of the immune system, playing important roles in modulating inflammatory immune responses in numerous cell types including dendritic cells, macrophages, and B cells. As well as driving the expression of type I interferon in antiviral responses, IRF5 is also crucial for driving macrophages toward a proinflammatory phenotype by regulating cytokine and chemokine expression and modulating B-cell maturity and antibody production. This review highlights the functional importance of IRF5 in a disease setting, by discussing polymorphic mutations at the human Irf5 locus that lead to susceptibility to systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In concordance with this, we also discuss lessons in IRF5 functionality learned from murine in vivo models of autoimmune disease and inflammation and hypothesize that modulation of IRF5 activity and expression could provide potential therapeutic benefits in the clinic.
-
Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion, and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident for more than several decades that a more complex disease process contributes to the myriad of clinical complications seen in patients with SCD with inflammation playing a central role. ⋯ In addition, they are useful tools to dissect the molecular and cellular mechanisms that promote individual clinical events and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only Food and Drug Administration-approved drug for SCD.
-
Chronic pain is a significant health care problem, ineffectively treated because of its unclear etiology and heterogeneous clinical presentation. Emerging evidence demonstrates that microRNAs (miRNAs) regulate the expression of pain-relevant genes, yet little is known about their role in chronic pain. Here, we evaluate the relationship among pain, psychological characteristics, plasma cytokines, and whole blood miRNAs in 22 healthy controls (HCs); 33 subjects with chronic pelvic pain (vestibulodynia, VBD); and 23 subjects with VBD and irritable bowel syndrome (VBD + IBS). ⋯ VBD subjects differed from controls in expression of 10 miRNAs of predicted importance for pain and estrogen signaling. VBD + IBS subjects differed from controls in expression of 11 miRNAs of predicted importance for pain, cell physiology, and insulin signaling. miRNA expression was correlated with pain-relevant phenotypes and cytokine levels. These results suggest that miRNAs represent a valuable tool for differentiating VBD subtypes (localized pain with apparent peripheral neurosensory disruption vs widespread pain with a central sensory contribution) that may require different treatment approaches.
-
Metadherin (MTDH) was found to be highly expressed in various squamous cell carcinomas (SCCs); however, meta-analysis evaluating the association of MTDH in SCC has not been performed. The purpose of this study was to explore the biological functions of MTDH in esophageal squamous cell carcinoma (ESCC) and to meta-analyze the association between MTDH and SCC. Immunohistochemistry was performed to examine MTDH expression using an ESCC tissue array consisting of 86 ESCC and 78 paired normal adjacent tissues (NATs). ⋯ Knockdown of MTDH using an MTDH-short hairpin RNA plasmid caused cell cycle arrest at the G0/G1 phase and induced apoptosis of EC9706 cells. Knockdown of MTDH suppressed the proliferation, invasion, and migration of ESCC cells. Furthermore, meta-analysis revealed that overexpression of MTDH was significantly associated with the lymph node metastasis, advanced clinical stage, and T classification of tissues in SCC, suggesting that MTDH might be used as a potential therapeutic target in the lymph node metastasis of ESCC.