Translational research : the journal of laboratory and clinical medicine
-
Telomeres are DNA-protein structures that cap the ends of chromosomes; telomerase is the enzyme that ensures their integrity. Telomere biology has recently been implicated in the pathogenesis of a variety of lung diseases, including idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease/emphysema, and lung cancer. This review highlights recent discoveries pertaining to the role of telomere biology in lung disease.
-
Renal proximal tubule transporters can play a key role in excretion, pharmacokinetic interactions, and toxicity of immunosuppressant drugs. Basolateral organic anion transporters (OATs) and apical multidrug resistance-associated proteins (MRPs) contribute to the active tubular uptake and urinary efflux of these drugs, respectively. We studied the interaction of 12 immunosuppressants with OAT1- and OAT3-mediated [(3)H]-methotrexate (MTX) uptake in cells, and adenosine triphosphate-dependent [(3)H]-MTX transport in membrane vesicles isolated from human embryonic kidney 293 cells overexpressing human MRP2 and MRP4. ⋯ Cytarabine and azathioprine had no effect on either transporter. In conclusion, we charted comprehensively the differences in inhibitory action of various immunosuppressive agents against the 4 key renal anion transporters, and we provide evidence that immunosuppressant drugs can modulate OAT1-, OAT3-, MRP2-, and MRP4-mediated transport of MTX to different extents. The data provide a better understanding of renal mechanisms underlying drug-drug interactions and nephrotoxicity concerning combination regimens with these compounds in the clinic.
-
Assessments of disease activity and organ damage in systemic lupus erythematosus (SLE) remain challenging because of the lack of reliable biomarkers and disease heterogeneity. Ongoing inflammation can be difficult to distinguish from permanent organ damage caused by previous flare-ups or medication side effects. Circulating soluble urokinase plasminogen activator receptor (suPAR) has emerged as a potential marker of inflammation and disease severity, and an outcome predictor in several disparate conditions. ⋯ Considering distinct SDI domains, renal, neuropsychiatric, ocular, skin, and peripheral vascular damage had a significant effect on suPAR levels. This study is the first to demonstrate an association between serum suPAR and irreversible organ damage in SLE. Further studies are warranted to evaluate suPAR and other biomarkers as predictors of evolving organ damage.
-
Randomized Controlled Trial Clinical Trial
First in-human intraoperative imaging of HCC using the fluorescence goggle system and transarterial delivery of near-infrared fluorescent imaging agent: a pilot study.
Surgical resections remain the primary curative interventions for hepatocellular carcinoma (HCC). However, lack of real-time intraoperative image guidance confines surgeons to subjective visual assessment of the surgical bed, leading to poor visualization of small positive nodules and the extension of diffuse HCC. To address this problem, we developed a wearable fluorescence imaging and display system (fluorescence goggle) for intraoperative imaging of HCCs in human patients. ⋯ In the group (n = 5) that received ICG intravenously, only 2 of 6 tumors visible by preoperative MRI or CT were identified with the fluorescence goggle, demonstrating the limitation of this delivery route for a non-tumor-selective imaging agent. Comparative analysis shows that the HCC-to-liver florescence contrast detected by the goggle was significantly greater in patients that received TAH than IV delivery of ICG (P = 0.013). This pilot study demonstrates the feasibility of using the fluorescence goggle to identify multifocal lesions and small tumor deposits using TAH ICG delivery in HCC patients.
-
Different anatomic and physiological changes occur in the lung of aging people that can affect pulmonary functions, and different pulmonary diseases, including deadly diseases such as chronic obstructive pulmonary disease (COPD)/emphysema and idiopathic pulmonary fibrosis (IPF), can be related to an acceleration of the aging process. The individual genetic background, as well as exposure to a variety of toxic substances (cigarette smoke in primis) can contribute significantly to accelerating pulmonary senescence. ⋯ According to recently proposed pathogenic models in COPD and IPF, premature cellular senescence likely affects distinct progenitors cells (mesenchymal stem cells in COPD, alveolar epithelial precursors in IPF), leading to stem cell exhaustion. In this review, the large amount of data supporting this pathogenic view are discussed, with emphasis on the possible molecular and cellular mechanisms leading to the severe parenchymal remodeling that characterizes, in different ways, these deadly diseases.