Translational research : the journal of laboratory and clinical medicine
-
Antibodies to the nucleocapsid (N) antigen are suggested to be used to monitor infections after COVID-19 vaccination, as first generation subunit vaccines are based on the spike (S) protein. We used multiplex immunoassays to simultaneously measure antibody responses to different fragments of the SARS-CoV-2 S and N antigens for evaluating the immunogenicity of the mRNA-1273 (Spykevax) and the BNT162b2 (Comirnaty) vaccines in 445 health care workers. ⋯ The increase in IgG levels and avidity was more pronounced after Spykevax than Comirnaty vaccination (36.2% vs 13.1% for N CT, and 10.6% vs 3.7% for N FL). Data suggest the induction of cross-reactive antibodies against the N CT region after administering these S-based vaccines, and this should be taken into account when using N seropositivity to detect breakthroughs.
-
Trimethylamine-N-oxide (TMAO), a gut microbiota-produced metabolite, is accumulated in chronic kidney disease (CKD) patients. It is well known to contribute to CKD-related cardiovascular complications. However, the effect of TMAO on peritoneal dialysis (PD)-related peritonitis remains largely unknown. ⋯ In vitro study revealed that TMAO directly induced primary peritoneal mesothelial cell necrosis, together with increased production of pro-inflammatory cytokines including CCL2, TNF-α, IL-6, and IL-1β. In addition, TMAO significantly increased TNF-α-induced P-selectin production in mesothelial cells, as well as high glucose-induced TNF-α and CCL2 expression in endothelial cells. In conclusion, our data demonstrate that higher levels of TMAO exacerbate peritoneal inflammation and might be a risk factor of incidence of peritonitis in PD patients.
-
Heritable thoracic aortic disease and familial thoracic aortic aneurysm/dissection are important causes of human morbidity/mortality, most without identifiable genetic cause. In a family with familial thoracic aortic aneurysm/dissection, we identified a missense p. (Ser178Arg) variant in PLOD1 segregating with disease, and evaluated PLOD1 enzymatic activity, collagen characteristics and in human aortic vascular smooth muscle cells, studied the effect on function. Comparison with homologous PLOD3 enzyme indicated that the pathogenic variant may affect the N-terminal glycosyltransferase domain, suggesting unprecedented PLOD1 activity. ⋯ In comparison, si-PLOD1 cells demonstrated hypercontractility and upregulation of contractile markers, providing evidence for phenotypic switching. Together, the findings suggest that the PLOD1 product is preserved, however newly identified glucosyltransferase activity of PLOD1 appears to be affected by folding stability of the variant, and is associated with compensatory vascular smooth muscle cells phenotypic switching to support collagen production, albeit with less robust fibril girth. Future studies should focus on the impact of PLOD1 folding/variant stability on the tertiary structure of collagen and ECM interactions.
-
Therapeutic strategies to prevent or reduce the severity of radiation pneumonitis are a serious unmet need. We evaluated extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a damage-associated molecular pattern protein (DAMP) and Toll-Like Receptor 4 (TLR4) ligand, as a therapeutic target in murine radiation pneumonitis. Radiation-induced murine and human NAMPT expression was assessed in vitro, in tissues (IHC, biochemistry, imaging), and in plasma. ⋯ Nampt+/- mice and eNAMPT pAb/mAb-treated mice exhibited significant histologic attenuation of WTLI-mediated lung injury with reduced levels of BAL protein and cells, and plasma levels of eNAMPT, IL-6, and IL-1β. Genomic and biochemical studies from WTLI-exposed lung tissues highlighted dysregulation of NFkB/cytokine and MAP kinase signaling pathways which were rectified by eNAMPT mAb treatment. The eNAMPT/TLR4 pathway is essentially involved in radiation pathobiology with eNAMPT neutralization an effective therapeutic strategy to reduce the severity of radiation pneumonitis.
-
CD160 is a member of the immunoglobulin superfamily with a pattern of expression mainly restricted to cytotoxic cells. To assess the functional relevance of the HVEM/CD160 signaling pathway in allogeneic cytotoxic responses, exon 2 of the CD160 gene was targeted by CRISPR/Cas9 to generate CD160 deficient mice. Next, we evaluated the impact of CD160 deficiency in the course of an alloreactive response. ⋯ Ig showed an enhanced survival trend of bm1 skin allografts in CD160 KO with respect to WT recipients. Finally, CD160 deficient NK cells were as proficient as CD160 WT NK cells in rejecting allogeneic cellular allografts or MHC class I deficient tumor cells. CD160 may represent a CD28 alternative costimulatory molecule for the modulation of allogeneic CD8 T cell responses either in combination with costimulation blockade or by direct targeting of alloreactive CD8 T cells that upregulate CD160 expression in response to alloantigen stimulation.