Translational research : the journal of laboratory and clinical medicine
-
Extracellular vesicles (EVs) have been recently postulated as key players in metabolic disorders emerging as an alternative way of paracrine/endocrine communication. However, the nature of EVs shed by adipose tissue (AT) and their role in obesity is still very limited. Here, we isolated human morbid obese visceral (VAT) and subcutaneous (SAT) whole AT shed EVs from donors submitted to bariatric surgery to characterize their protein cargo by qualitative and quantitative/SWATH mass spectrometry analysis. ⋯ Thus, a significant elevation of -TGFBI-EVs was detected on those obese patients with a history of T2D compared to nondiabetic, and an augmentation of mimecan-EVs in obese plasma compared to those in healthy lean individuals. Thus, we conclude that obese AT release functional EVs carrying AT and obesity candidate biomarkers which vary regarding the AT of origin. Our findings suggest that circulating EV-TGFBI may facilitate monitoring T2D status in obese patients, and EV-mimecan may be useful to track adiposity, and more precisely, visceral obesity.
-
Elevated serum aldosterone promotes arterial hypertension, cardiac hypertrophy, and diastolic dysfunction. However, the effect of elevated aldosterone levels on cardiac mitochondria remains unclear. We used primary cultures of mouse cardiomyocytes to determine whether aldosterone has direct effects on cardiomyocyte mitochondria, and aldosterone-infused mice as a preclinical model to evaluate the impact of aldosterone in vivo. ⋯ Similarly, patients with primary aldosteronism had a lower plasma leukocyte mtDNA copy number. Plasma leukocyte mtDNA copy number was positively correlated with 24-hour urinary aldosterone level and left ventricular mass index. In conclusion, aldosterone suppresses cardiac mitochondria in vivo and directly via MR activation of ROS pathways.
-
Retracted Publication
Network-based response module comprised of gene expression biomarkers predicts response to infliximab at treatment initiation in ulcerative colitis.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors after consulting with the Editors. During a follow-up study, the authors regretfully discovered that the microarray probe-to-gene mapping was incorrect. Although the methodology and primary findings remain the same, the identity of the biomarker genes are incorrect as a result of this honest mistake. The extent of the changes to correct this information necessitated the publication of a corrected version of this article: https://doi.org/10.1016/j.trsl.2022.03.006.
-
Prediction of human pharmacokinetics (PK) from data obtained in animal studies is essential in drug development. Here, we present a thorough examination of how to achieve good pharmacokinetic data from the pig model for translational purposes by using single-species allometric scaling for selected therapeutic proteins: liraglutide, insulin aspart and insulin detemir. The predictions were based on non-compartmental analysis of intravenous and subcutaneous PK data obtained from two injection regions (neck, thigh) in two pig breeds, domestic pig and Göttingen Minipig, that were compared with PK parameters reported in humans. ⋯ In both breeds, thigh vs neck dosing was associated with a higher dose-normalized maximum plasma concentration and area under the curve as well as shorter MAT and plasma half-life (P <0.01). Finally, more superficial injections resulted in faster absorption, higher Cmax/dose and bioavailability of insulin aspart (P <0.05, 3.0 vs 5.0 mm injection depth). In conclusion, pig breed and injection region affected the PK of liraglutide, insulin aspart and insulin detemir and reliable predictions of human PK were demonstrated when applying single-species allometric scaling with the pig as a pre-clinical animal model.
-
The differential diagnosis of psoriatic arthritis (PsA) and rheumatoid arthritis (RA) is difficult because of the lack of diagnostic clinical signs and reliable biomarkers. This study investigated microRNAs (miRNA) and adipokines as potential additional markers to discriminate PsA from RA. The expression profile of miRNA (miR-21, miR-140, miR-146a, miR-155, miR-181b, miR-223, miR-let-7e) and inflammatory cytokines (IL-1β, IL-6, IL-17a, IL-23a, TNF-α) from peripheral blood mononuclear cells of PsA and RA patients compared to healthy controls (HC) were evaluated by real-time PCR, and serum adipokines (adiponectin, chemerin, leptin, resistin, visfatin) and cytokines by ELISA assay. ⋯ Univariable binary logistic regression analysis found the above-mentioned markers associated to PsA versus RA. Our results first demonstrated an increased expression of circulating miR-140 and serum leptin in PsA patients compared to RA, which were identified as potential additional biomarkers to discriminate PsA from RA. Since the differential diagnosis of PsA and RA poses challenges in clinical practice, our data may help to enhance the diagnostic performance of PsA in daily practice.