Translational research : the journal of laboratory and clinical medicine
-
Oncolytic virotherapy is a new and safe therapeutic strategy for cancer treatment. In our previous study, a new type of oncolytic herpes simplex virus type 2 (oHSV2) was constructed. Following the completion of a preclinical study, oHSV2 has now entered into clinical trials for the treatment of melanoma and other solid tumors (NCT03866525). ⋯ We found for the first time that the expression of a pair of checkpoint molecules, NKG2A (on NK cells) and HLA-E (on tumor cells), is upregulated by UV-oHSV2 stimulation. Anti-NKG2A and anti-HLA-E treatment could further enhance the antitumor effects of UV-oHSV2-stimulated NK92 cells in vitro and in vivo. As our oHSV2 clinical trial is ongoing, we expect that the combination therapy of oncolytic virus oHSV2 and anti-NKG2A/anti-HLA-E antibodies may have synergistic antitumor effects in our future clinical trials.
-
Identification of patients with high-risk asymptomatic atherosclerotic plaques remains an elusive but essential step in preventing stroke. However, there is a lack of animal model that provides a reproducible method to predict where, when and what types of plaque formation, which fulfils the American Heart Association (AHA) histological classification of human plaques. We have developed a predictive mouse model that reflects different stages of human plaques in a single carotid artery by means of shear-stress modifying cuff. ⋯ By weeks 20 and 30, this model achieved 80% and near 100% accuracy respectively, in predicting precisely where, when and what stages/AHA types of plaques develop along the same carotid artery. This model can generate clinically-relevant plaques with varying phenotypes fulfilling AHA classification and risk levels, in specific locations of the single artery with near 100% accuracy of prediction. The model offers a promising tool for development of diagnostic tools to target high-risk plaques, increasing accuracy in predicting which individual patients may require surgical intervention to prevent stroke, paving the way for personalized management of carotid atherosclerotic disease.
-
Elevated serum aldosterone promotes arterial hypertension, cardiac hypertrophy, and diastolic dysfunction. However, the effect of elevated aldosterone levels on cardiac mitochondria remains unclear. We used primary cultures of mouse cardiomyocytes to determine whether aldosterone has direct effects on cardiomyocyte mitochondria, and aldosterone-infused mice as a preclinical model to evaluate the impact of aldosterone in vivo. ⋯ Similarly, patients with primary aldosteronism had a lower plasma leukocyte mtDNA copy number. Plasma leukocyte mtDNA copy number was positively correlated with 24-hour urinary aldosterone level and left ventricular mass index. In conclusion, aldosterone suppresses cardiac mitochondria in vivo and directly via MR activation of ROS pathways.
-
CD160 is a member of the immunoglobulin superfamily with a pattern of expression mainly restricted to cytotoxic cells. To assess the functional relevance of the HVEM/CD160 signaling pathway in allogeneic cytotoxic responses, exon 2 of the CD160 gene was targeted by CRISPR/Cas9 to generate CD160 deficient mice. Next, we evaluated the impact of CD160 deficiency in the course of an alloreactive response. ⋯ Ig showed an enhanced survival trend of bm1 skin allografts in CD160 KO with respect to WT recipients. Finally, CD160 deficient NK cells were as proficient as CD160 WT NK cells in rejecting allogeneic cellular allografts or MHC class I deficient tumor cells. CD160 may represent a CD28 alternative costimulatory molecule for the modulation of allogeneic CD8 T cell responses either in combination with costimulation blockade or by direct targeting of alloreactive CD8 T cells that upregulate CD160 expression in response to alloantigen stimulation.
-
Prediction of human pharmacokinetics (PK) from data obtained in animal studies is essential in drug development. Here, we present a thorough examination of how to achieve good pharmacokinetic data from the pig model for translational purposes by using single-species allometric scaling for selected therapeutic proteins: liraglutide, insulin aspart and insulin detemir. The predictions were based on non-compartmental analysis of intravenous and subcutaneous PK data obtained from two injection regions (neck, thigh) in two pig breeds, domestic pig and Göttingen Minipig, that were compared with PK parameters reported in humans. ⋯ In both breeds, thigh vs neck dosing was associated with a higher dose-normalized maximum plasma concentration and area under the curve as well as shorter MAT and plasma half-life (P <0.01). Finally, more superficial injections resulted in faster absorption, higher Cmax/dose and bioavailability of insulin aspart (P <0.05, 3.0 vs 5.0 mm injection depth). In conclusion, pig breed and injection region affected the PK of liraglutide, insulin aspart and insulin detemir and reliable predictions of human PK were demonstrated when applying single-species allometric scaling with the pig as a pre-clinical animal model.