Translational research : the journal of laboratory and clinical medicine
-
Deleterious hyper-inflammation resulting from macrophage activation may aggravate sepsis and lead to lethality. Tumor endothelial marker 1 (TEM1), a type I transmembrane glycoprotein containing six functional domains, has been implicated in cancer and chronic sterile inflammatory disorders. However, the role of TEM1 in acute sepsis remains to be determined. ⋯ Treatment with rTEM1D1 improved survival and attenuated circulating TNF-α and IL-6, lung injury and pulmonary accumulation of leukocytes in LPS-challenged mice. These findings demonstrated differential roles for the TEM1 lectin-like domain in macrophages and soluble TEM1 lectin-like domain in sepsis. TEM1 in macrophages mediates LPS-induced inflammation via its lectin-like domain, whereas rTEM1D1 interferes with LPS-induced macrophage activation and sepsis.
-
Rectal cancer remains a challenging disease to treat. Therapy for locally advanced rectal cancer (LARC), the most frequent presentation, has evolved to include a multimodal approach of radiation, chemotherapy, and surgery. While this approach improves local disease control, the distant recurrence rate is nearly 30% and treatment-related morbidity is substantial, thus underscoring the need for new therapeutic approaches with better efficacy and lower side effects. ⋯ We also address the role of current immunotherapies in colorectal cancer and highlight where novel immunotherapy approaches are currently being evaluated in LARC. Finally, we address important future directions in LARC immunotherapy including the need to define optimal therapeutic sequencing, predictive biomarkers, strategies to limit treatment-related side effects and the potential of gut microbiome manipulation to improve outcomes. In summary, this review provides a framework to guide future research and inform immunotherapy trial design so as to advance rectal cancer care.
-
Systemic sclerosis (SSc) is an idiopathic autoimmune disease with a heterogeneous clinical phenotype ranging from limited cutaneous involvement to rapidly progressive diffuse SSc. The most severe SSc clinical and pathologic manifestations result from an uncontrolled fibrotic process involving the skin and various internal organs. The molecular mechanisms responsible for the initiation and progression of the SSc fibrotic process have not been fully elucidated. ⋯ Currently, there are no effective disease-modifying therapies for SSc-associated tissue fibrosis. Therefore, extensive investigation has been conducted to examine whether tyrosine kinase inhibitors (TKIs) may exert antifibrotic effects. Here, we review the role of receptor and nonreceptor tyrosine kinases in the pathogenesis of the frequently progressive cutaneous and systemic fibrotic alterations in SSc, and the potential of TKIs as SSc disease-modifying antifibrotic therapeutic agents.
-
This study aimed to assess the angiographic characteristics, feasibility and safety of the provocative test with acetylcholine (AChT), and the influence on further treatment and prognosis of Middle European patients in 5-year follow-up, especially focusing on those with a history of myocardial infarction (MI) with nonobstructive coronary arteries (MINOCA). The AChPOL Registry was an ongoing prospective single-center registry that included patients undergoing AChT from December 2010 to March 2013 for further diagnostic evaluation of a suspicious variant angina or coronary microvascular spasm, based on the COVADIS criteria. AChT was injected in incremental doses of 25, 50, and 75µg into the right coronary artery and 25, 50, and 100 µg into the left coronary artery, and the patients were followed up for 5 years. ⋯ Interestingly, patients with a history of MINOCA had higher rates of MI and recurrent chest pain requiring hospitalization in the follow-up. We showed that AChT was safe in Middle European patients. In the follow-up patients with microvascular spasm and a history of MINOCA had the highest risk of MI and recurrent chest pain requiring hospitalization.
-
Currently, clinicians rely on clinical nomograms to stratify progression risk at the time of diagnosis in patients with prostate cancer (CaP). However, these tools may not accurately distinguish aggressive potential in low-grade CaP. The current study determined the diagnostic potential of 3 molecular markers (ROCK1, RUNX3, and miR-301a) in terms of their ability to identify which low-grade tumors are likely to progress. ⋯ Expressions of ROCK1 and miR-301a were found to be significantly higher in Gleason 6 and 7 CaP as compared to BPH, while an inverse trend was observed with RUNX3. Further, incorporation of all 3 molecular markers significantly improved clinical nomograms' diagnostic accuracy and correlated with disease progression. Hence, in conclusion, the inclusion of these 3 molecular markers identified aggressive phenotype and predicted disease progression in low-grade CaP tumors at the time of diagnosis.