Translational research : the journal of laboratory and clinical medicine
-
The processes of angiogenesis, cell proliferation, invasion, and migration, and the signaling pathways that drive these events, are activated in both cancer and during embryonic development. Here, we systematically assessed how the activity of major developmental signaling pathways, represented by the expression of genes encoding components of the pathways, correlated with patient survival in ∼8000 patients across 17 cancer types. ⋯ We investigated individual components of these pathways and found that expression of the gene encoding the non-canonical Wnt receptor, frizzled 2 (FZD2), is highly correlated with both poor patient survival and gene expression indicating EMT in the tumors. Further mechanistic studies and pathway analyses revealed that FZD2-regulated genes in cancer cells in culture or FZD2-regulated gene sets from the TCGA data or FZD2-regulated genes involved in mouse organogenesis converged in EMT-associated biological processes, suggesting that FZD2 is a key driver of mesenchymal-like cell state and thus, a contributor to cancer progression and metastasis.
-
Chronic obstructive pulmonary disease (COPD) increases the risk of atrial fibrillation (AF), however, its arrhythmogenic mechanisms are unclear. This study investigated the effects of COPD on AF triggers (pulmonary veins, PVs) and substrates (atria), and their potential underlying mechanisms. Electrocardiographic, echocardiographic, and biochemical studies were conducted in control rabbits and rabbits with human leukocyte elastase (0.3 unit/kg)-induced COPD. ⋯ H89 (10 μM), KN93 (1 μM), and KB-R7943 (10 μM) significantly suppressed burst firing and delayed afterdepolarizations in the PVs of the rabbits with COPD. Moreover, compared with the control rabbits, those with COPD had lower expression levels of the β1 adrenergic receptor, Cav 1.2, and Na+/Ca2+ exchanger in the PVs; Cav 1.2 in the LA; and hyperpolarization-activated cyclic nucleotide-gated K+ channel 4 in the SAN. COPD increases atrial arrhythmogenesis by modulating the distinctive electrophysiological characteristics of the PVs, LA, and SAN.
-
Extensive antibiotic use combined with poor historical drug stewardship practices have created a medical crisis in which once treatable bacterial infections are now increasingly unmanageable. To combat this, new antibiotics will need to be developed and safeguarded. An emerging class of antibiotics based upon nuclease-stable antisense technologies has proven valuable in preclinical testing against a variety of bacterial pathogens. This review describes the current state of development of antisense-based antibiotics, the mechanisms thus far employed by these compounds, and possible future avenues of research.
-
Smad4 plays a central role in the regulation of extracellular matrix (ECM) protein expression and cell differentiation; however, the molecular regulation of Smad4 protein stability by a deubiquitinase has not been reported. In the current study, we reveal that a deubiquitinase USP13 stabilizes Smad4, ultimately modulating ECM protein expression in lung fibroblast cells. USP13 was increased in primary adult lung fibroblasts isolated from bleomycin-challenged mice and transforming growth factor (TGF)-β1-treated primary mouse lung fibroblasts. ⋯ Overexpression of USP13 increased FN and Smad4 protein levels in lung fibroblasts, while downregulation of USP13 reduced Smad4 protein levels, without altering Smad4 mRNA expression, suggesting that USP13 regulates Smad4 protein stability. Knockdown of USP13 decreased Smad4 half-life and promoted Smad4 ubiquitination. Both Smad4 and USP13 were co-localized in the cytoplasm in treated cell, and co-translocated into the nucleus in response to TGF-β1. The results indicate that USP13 promotes ECM expression by stabilizing Smad4 in lung fibroblasts and plays a role in the maintenance of the extracellular matrix in lungs.
-
Review
Liquid biopsy for breast cancer using extracellular vesicles and cell-free microRNAs as biomarkers.
Improvement of breast cancer (BC) patient's outcome is directly related to early detection. However, there is still a lack of reliable biomarkers for diagnosis, prognosis and, treatment follow up in BC, leading researchers to study the potential of liquid biopsy based on circulating microRNAs (c-miRNAs). ⋯ In this review, we discuss new findings about c-miRNA and their potential as biomarkers for BC diagnosis, prognosis, and therapy. Additionally, we address the impact of limitations associated with the standardization of analysis techniques and methods on the implementation of these biomarkers in the clinical setting.