Translational research : the journal of laboratory and clinical medicine
-
The development of organ fibrosis has garnered rising attention as multiple diseases of increasing and/or high prevalence appear to progress to the chronic stage. Such is the case for heart, kidney, liver, and lung where diseases such as diabetes, idiopathic/autoimmune disorders, and nonalcoholic liver disease appear to notably drive the development of fibrosis. Noteworthy is that the severity of these pathologies is characteristically compounded by aging. ⋯ In vitro studies and transgenic animals models have also been used in an attempt to understand the role that sex hormones and related receptors play in the development of fibrosis. However, in the setting of chronic disease in some organs such as the heart older (postmenopausal) women within a few years can quickly approach men in disease severity and develop significant degrees of fibrosis. This review summarizes the current body of relevant literature and highlights the imperative need for a major focus to be placed on understanding the manner in which sex and the presence or absence of related hormones modulates cell phenotypes so as to allow for fibrosis to develop.
-
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease characterized by fat accumulation and inflammation in liver. Yet, the mechanistic insight and diagnostic and therapeutic options of NASH remain incompletely understood. This study tested the roles of cysteine protease cathepsin B (CatB) in mouse NASH development. ⋯ Mechanistic studies showed that CatB deficiency decreased liver expression of adhesion molecules, inflammatory cytokine, and chemokine, along with reduced liver inflammatory cell infiltration. CatB deficiency also promoted M2 macrophage polarization and reduced liver TGF-β1 signaling and fibrosis. Together, CatB deficiency improves liver function in NASH mice by suppressing de novo lipogenesis and liver inflammation and fibrosis.
-
Disseminated intravascular coagulation (DIC) is a frequent complication of sepsis that affects patient outcomes due to accompanying thrombo-inflammation and microvascular permeability changes. Platelet endothelial cell adhesion molecule-1 (PECAM-1), a cellular adhesion and signaling receptor that is expressed on both hematopoietic and endothelial cells, plays an important anti-inflammatory role in acute and chronic inflammatory disease models. Little is known, however, about role and mechanism of PECAM-1 in septic DIC. ⋯ This phenomenon seemed to be equally linked to PECAM-1 expression by both endothelial and blood cells. Furthermore, PECAM-1 was found to exert its protective effect on developing septic DIC by the following 2 distinct mechanisms: the inhibition of macrophage pyroptosis and the acceleration of the restoration of the endothelial cell barrier. Taken together, these results implicate PECAM-1 as a potentially attractive target for the development of novel therapeutics to manage and treat septic DIC.
-
Randomized Controlled Trial
Baseline urinary metabolites predict albuminuria response to spironolactone in type 2 diabetes.
The mineralocorticoid receptor antagonist spironolactone significantly reduces albuminuria in subjects with diabetic kidney disease, albeit with a large variability between individuals. Identifying novel biomarkers that predict response to therapy may help to tailor spironolactone therapy. We aimed to identify a set of metabolites for prediction of albuminuria response to spironolactone in subjects with type 2 diabetes. ⋯ In the replication cohort, UACR reduction was -54% (25th to 75% percentile -65 to -50), -41 (25th to 75% percentile -46% to 30), and -17% (25th to 75% percentile -36 to 5), respectively, P = 0.010 for trend). We identified a set of 18 urinary metabolites through systems biology to predict albuminuria response to spironolactone in type 2 diabetes. These data suggest that urinary metabolites may be used as a tool to tailor optimal therapy and move in the direction of personalized medicine.
-
There are over 15 million survivors of cancer in the United States whose rates of frailty, an aging phenotype, range from just under 10% to over 80%. Frailty impacts not only disease survival but also long-term function and quality of life in children, adolescents, and in all adults diagnosed and/or treated for cancer. ⋯ Biological mechanisms responsible for aging and potentially for frailty among individuals with or who have been treated for cancer are discussed. Finally, promising pharmaceutical and lifestyle interventions designed to impact aging rather than a specific disease, tested in other populations, but likely applicable in cancer patients and survivors, are discussed.