Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
-
Epileptic encephalopathies represent a group of devastating epileptic disorders that occur early in life and are often characterized by pharmaco-resistant epilepsy, persistent severe electroencephalographic abnormalities, and cognitive dysfunction or decline. Next generation sequencing technologies have increased the speed of gene discovery tremendously. Whereas ion channel genes were long considered to be the only significant group of genes implicated in the genetic epilepsies, a growing number of non-ion-channel genes are now being identified. ⋯ We review the recent next generation sequencing findings that may impact treatment choices. We also describe the use of conventional and newer anti-epileptic and hormonal medications in the various syndromes based on their genetic profile. At a biological level, developments in cellular reprogramming and genome editing represent a new direction in modeling these pediatric epilepsies and could be used in the development of novel and repurposed therapies.
-
Traumatic brain injury (TBI) causes microglial activation and related neurotoxicity that contributes to chronic neurodegeneration and loss of neurological function. Selective activation of metabotropic glutamate receptor 5 (mGluR5) by the orthosteric agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), is neuroprotective in experimental models of TBI, and has potent anti-inflammatory effects in vitro. However, the therapeutic potential of CHPG is limited due to its relatively weak potency and brain permeability. ⋯ VU0360172 significantly reduced CD68 and NOX2 expression in activated microglia in the cortex at 28 days post-injury, and also suppressed pro-inflammatory signaling pathways in BV2 and primary microglia. In addition, VU0360172 treatment shifted the balance between M1/M2 microglial activation states towards an M2 pro-repair phenotype. This study demonstrates that VU0360172 confers neuroprotection after experimental TBI, and suggests that mGluR5 PAMs may be promising therapeutic agents for head injury.